【題目】函數(shù)對任意的滿足:,當時,

1)求出函數(shù)在R上零點;

2)求滿足不等式的實數(shù)的范圍.

【答案】(1) ;(2) .

【解析】

(1)根據(jù)奇偶函數(shù)的定義、函數(shù)的周期定義,結(jié)合已知可以判斷出該函數(shù)的奇偶性和周期,可以判斷出時,的零點情況,最后利用函數(shù)的奇偶性和周期求出函數(shù)在R上零點;

(2)先判斷出當時,函數(shù)的單調(diào)性,再利用函數(shù)的奇偶性,可以化簡不等式,最后求出實數(shù)的范圍.

(1)因為 ,所以函數(shù)是周期為2的奇函數(shù).

因為,所以當時,函數(shù)沒有零點,根據(jù)奇函數(shù)的對稱性可知:當

,函數(shù)沒有零點,而,令,有,而由奇函數(shù)的性質(zhì)可知:,所以有,因此當時,函數(shù)有三個零點,又因為函數(shù)的周期是2,所以函數(shù)的零點為:,即;

(2)設(shè),因此.

,

因為,所以,因此,故函數(shù)時是增函數(shù).

因為函數(shù)是奇函數(shù),所以

因為 ,所以,,因此當,根據(jù)單調(diào)性可知:

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,.

1)若,且,求的通項公式;

2)設(shè)的第項是最大項,即,求證:的第項是最大項;

3)設(shè),求的取值范圍,使得有最大值與最小值,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點,焦點在軸上的橢圓過點,且離心率為的右焦點,上一點,軸,的半徑為

1)求的方程;

2)若直線交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點(t表示第t月份,),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量V(單位:億立方米)與時間t的近似函數(shù)關(guān)系為:當0<t10時,;當10<t12時,;若2月份該水庫的蓄水量為33.6億立方米.

(1)求實數(shù)a的值;

(2)求一年內(nèi)該水庫的最大蓄水量.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,

(1)若函數(shù)fx)有兩個零點,求實數(shù)a的取值范圍;

(2)若a=3,且對任意的x1∈[-1,2],總存在,使gx1)-fx2)=0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當時,求函數(shù)處的切線方程;

2)是否存在非負整數(shù),使得函數(shù)是單調(diào)函數(shù),若存在,求出的值;若不存在,請說明理由;

3)已知,若存在,使得當時,的最小值是,求實數(shù)的取值范圍.(注:自然對數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“類函數(shù)”,求是實數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大衍數(shù)列,來源于《乾坤譜》中對易傳“大衍之數(shù)五十“的推論.主要用于解釋中國傳統(tǒng)文化中的太極衍生原理數(shù)列中的每一項,都代表太極衍生過程中,曾經(jīng)經(jīng)歷過的兩儀數(shù)量總和是中華傳統(tǒng)文化中隱藏著的世界數(shù)學(xué)史上第一道數(shù)列題其規(guī)律是:偶數(shù)項是序號平方再除以2,奇數(shù)項是序號平方減1再除以2,其前10項依次是0,2,4,8,12,18,24,32,40,50,,如圖所示的程序框圖是為了得到大衍數(shù)列的前100項而設(shè)計的,那么在兩個判斷框中,可以先后填入( )

A. 是偶數(shù)?,? B. 是奇數(shù)?,?

C. 是偶數(shù)?, ? D. 是奇數(shù)?,?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩個函數(shù)在公共定義域上恒有,則稱這兩個函數(shù)是該區(qū)間上的“同步函數(shù)”.

(1)試判斷是否為公共定義域上的“同步函數(shù)”?

(2)已知函數(shù)是公共區(qū)域上的“同步函數(shù)”,求實數(shù)的取值范圍;

(3)已知上是“同步函數(shù)”,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案