分析 (Ⅰ)設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)是(-1,0),故c=1,再由離心率為$\frac{{\sqrt{3}}}{3}$,求出a和b的值,從而求得橢圓E的方程;
(Ⅱ)設(shè)切點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),直線l上一點(diǎn)M的坐標(biāo)(3,t),求出切線方程,再把點(diǎn)M代入切線方程,說明點(diǎn)A,B的坐標(biāo)都適合方$x+\frac{t}{2}y=1$,而兩點(diǎn)之間確定唯一的一條直線,從而求出定點(diǎn);
(Ⅲ)將直線AB的方程$x+\frac{t}{2}y=1$,代入橢圓方程,求出兩根的積和兩根的和,求出$\overrightarrow{|AC|}$,$\overrightarrow{|BC|}$的長(zhǎng),求出λ的值看在不在,再進(jìn)行判斷.
解答 (Ⅰ)解:設(shè)橢圓方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn)是(-1,0),故c=1,
又$\frac{c}{a}=\frac{{\sqrt{3}}}{3}$,∴$a=\sqrt{3},b=\sqrt{2}$,
∴所求的橢圓E的方程為$\frac{x^2}{3}+\frac{y^2}{2}=1$;
(Ⅱ)證明:設(shè)切點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),直線l上一點(diǎn)M的坐標(biāo)(3,t),
則切線方程分別為$\frac{{{x_1}x}}{3}+\frac{{{y_1}y}}{2}=1$,$\frac{{{x_2}x}}{3}+\frac{{{y_2}y}}{2}=1$,
又兩切線均過點(diǎn)M,即${x_1}+\frac{t}{2}{y_1}=1$,${x_2}+\frac{t}{2}{y_2}=1$,即點(diǎn)A,B的坐標(biāo)都適合方程$x+\frac{t}{2}y=1$,
故直線AB的方程是$x+\frac{t}{2}y=1$,顯然直線$x+\frac{t}{2}y=1$恒過點(diǎn)(1,0),故直線AB恒過定點(diǎn)(1,0);
(Ⅲ)解:將直線AB的方程$x+\frac{t}{2}y=1$,代入橢圓方程,
得$(\frac{t^2}{2}+3){y^2}-2ty-4=0$,
∴${y_1}+{y_2}=\frac{4t}{{{t^2}+6}},{y_1}{y_2}=\frac{-8}{{{t^2}+6}}$,不妨設(shè)y1>0,y2<0,
則$|{\overrightarrow{AC}}|=\frac{{\sqrt{{t^2}+4}}}{2}{y_1}$,同理$|{\overrightarrow{BC}}|=-\frac{{\sqrt{{t^2}+4}}}{2}{y_2}$,
∴$\frac{1}{{|{\overrightarrow{AC}}|}}+\frac{1}{{|{\overrightarrow{BC}}|}}=\frac{2}{{\sqrt{{t^2}+4}}}(\frac{1}{y_1}-\frac{1}{y_2})=\frac{2}{{\sqrt{{t^2}+4}}}•\frac{{\sqrt{48({t^2}+4)}}}{8}=\sqrt{3}$.
即$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=\sqrt{3}|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$,
故存在實(shí)數(shù)λ=$\sqrt{3}$,使得$|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|$成立.
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與圓錐曲線的綜合,考查運(yùn)算求解能力,注意解題方法的積累,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | $\frac{200}{π}$ | C. | 2π | D. | $\frac{100}{π}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④ | B. | ②③ | C. | ①④ | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8,2 | B. | 8,3 | C. | 6,3 | D. | 6,2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com