在等差數(shù)列{an}中,公差為d,Sn為前n項(xiàng)和,則有等式Sn=na1+
n(n-1)d
2
成立,類比上述性質(zhì):相應(yīng)地在等比數(shù)列{bn}中,公比為q,Tn為前n項(xiàng)積,則有等式Tn=
 
成立.
考點(diǎn):類比推理,數(shù)列的求和
專題:計(jì)算題,推理和證明
分析:根據(jù)等差數(shù)列與等比數(shù)列定義的類比,很容易得出結(jié)論.
解答: 解:根據(jù)等差數(shù)列與等比數(shù)列定義的類比,等差數(shù)列{an}中,Sn=na1+
n(n-1)d
2
成立,類比上述性質(zhì):相應(yīng)地在等比數(shù)列{bn}中,Tn=b1nq
n(n-1)
2

故答案為:b1nq
n(n-1)
2
點(diǎn)評:在解題過程中,尋找解題的突破口,往往離不開類比聯(lián)想,我們在解題中,要進(jìn)一步通過概念類比、性質(zhì)類比、結(jié)構(gòu)類比以及方法類比等思維訓(xùn)練途徑,來提高類比推理的能力,培養(yǎng)探究創(chuàng)新精神.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=
x-1
},集合B={y|y=-x2+4x-1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解參加運(yùn)動會的2000名運(yùn)動員的年齡情況,從中抽取20名運(yùn)動員的年齡進(jìn)行統(tǒng)計(jì)分析.就這個問題,下列說法中正確的有
 

①2000名運(yùn)動員是總體;
②每個運(yùn)動員是個體;
③所抽取的20名運(yùn)動員是一個樣本;
④樣本容量為20;
⑤抽樣方法可采用隨機(jī)數(shù)法抽樣;
⑥每個運(yùn)動員被抽到的機(jī)會相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正四棱錐P-ABCD底面的四個頂點(diǎn)A、B、C、D在球O的同一個大圓上,點(diǎn)P在球面上,如果VP-ABCD=
16
3
,則球O的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)定義運(yùn)算x*y=
x(x≤y)
y(x>y)
,若(2x-1)*x<2,則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,直線ρcos(θ+
π
4
)=1到極點(diǎn)的距離
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的極坐標(biāo)方程為ρ=2cosθ,直線l的參數(shù)方程為
x=5-
3
t
y=t
(t為參數(shù)),設(shè)A,B分別為圓C和直線l上的動點(diǎn),則|AB|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={(x,y)|y=f(x)},若對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“Ω集合”.給出下列4個集合:其中所有“Ω集合”的序號是( 。
①M(fèi)={(x,y)|y=e|x|}
②M={(x,y)|y=|cosx|}
③M={(x,y)|y=
x+1
x
}
④M={(x,y)|y=ln(x+2)}.
A、①③B、①④C、②④D、②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanθ=-2(-
π
2
<θ<0),則
sin2θ+1
cos2θ
=( 。
A、-
4
5
B、
4
5
C、-
1
3
D、
1
3

查看答案和解析>>

同步練習(xí)冊答案