【題目】個相同的小球放到三個編號為的盒子中,且每個盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),則共有多少種放法( )

A. B. C. D.

【答案】B

【解析】

根據(jù)題意,先在號盒子里放個球,在號盒子里放個球,在號盒子里放. 個球,則原問題可以轉(zhuǎn)化為將剩下的個小球,放入個盒子,每個盒子至少放個的問題,由擋板法分析可得答案.

根據(jù)題意,個相同的小球放到三個編號為的盒子中,且每個盒子內(nèi)的小球數(shù)要多于盒子的編號數(shù),

先在號盒子里放個球,在號盒子里放個球,在號盒子里放個球,

則原問題可以轉(zhuǎn)化為將剩下的個小球,放入個盒子,每個盒子至少放個的問題,

將剩下的個球排成一排,有個空位,在個空位中任選個,插入擋板,有種不同的放法,

即有個不同的符合題意的放法;

故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點均在以O為球心的某個球面上。則點O到平面ABC的距離為________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓周上分布著2002 個點,現(xiàn)將它們?nèi)我獾厝境砂咨蚝谏,如果從某一點開始,依任一方向繞圓周運動到任一點,所經(jīng)過的(包括該點本身)白點總數(shù)恒大于黑點總數(shù),則稱該點為好點.為確保圓周上至少有一個好點,試求所染黑點數(shù)目的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的參數(shù)方程為為參數(shù)),是曲線上的動點,且是線段的中點,點的軌跡為曲線,直線的極坐標(biāo)方程為,直線與曲線交于兩點.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)寫出過點的直線的參數(shù)方程,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

100

且已知在個人中隨機抽取人,抽到喜歡游泳的學(xué)生的概率為.

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認為喜歡游泳與性別有關(guān)?并說明你的理由.

附:(其中)和臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.45

0.708

1.32

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是正整數(shù),且.(1)試求出最大的正整數(shù),使得存在各邊長都是不大于的正整數(shù),且任意兩邊之差(大減小)都不小于k的三角形;(2)試求出所有的正整數(shù),使得(1)中所述的對應(yīng)于最大的正整數(shù)的三角形有且只有一個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是集合中具有如下性質(zhì)的子集的個數(shù):每個子集至少含有2個元素, 且每個子集中任意2個元素之差(絕對值)大于1 ..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知空間9點集,其中任意四點不共面.在這9個點間聯(lián)結(jié)若干條線段,構(gòu)成一個圖G,使圖中不存在四面體.問圖G中最多有多少個三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C,O為坐標(biāo)原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

同步練習(xí)冊答案