【題目】(2017·鄭州第二次質(zhì)量預(yù)測(cè))如圖,高為1的等腰梯形ABCD中,AMCDAB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC.

(1)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?

(2)當(dāng)點(diǎn)PAB邊的中點(diǎn)時(shí),求點(diǎn)B到平面MPC的距離.

【答案】(1)見(jiàn)解析(2)

【解析】試題分析:(1) 連接BDMC于點(diǎn)N,則,因此APAB ,再根據(jù)線面平行判定定理得結(jié)論(2)利用等體積法 ,再根據(jù)AM⊥平面MBCD,得,最后計(jì)算三角形面積代入可得結(jié)果

試題解析:解:(1)當(dāng)APAB時(shí),有AD∥平面MPC.

理由如下:

連接BDMC于點(diǎn)N,連接NP.

在梯形MBCD中,DCMB,

在△ADB中,,∴ADPN.

AD平面MPC,PN平面MPC,

AD∥平面MPC.

(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCDDM,AMDM,∴AM⊥平面MBCD.

VPMBC×SMBC×××2×1×.

在△MPC中,MPAB,MC,

PC,

SMPC××.

∴點(diǎn)B到平面MPC的距離為

d.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車(chē)間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)20克的為合格.

(1)從甲、乙兩車(chē)間分別隨機(jī)抽取2個(gè)零件,求甲車(chē)間至少一個(gè)零件合格且乙車(chē)間至少一個(gè)零件合格的概率;

(2)質(zhì)檢部門(mén)從甲車(chē)間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測(cè),若至少2件合格,檢測(cè)即可通過(guò),若至少3 件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(3)若從甲、乙兩車(chē)間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓Ea﹥b﹥0)的一個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓E.

)求橢圓E的方程;

)設(shè)不過(guò)原點(diǎn)O且斜率為的直線l與橢圓E交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為M,直線OM與橢圓E交于C,D,證明:|MA|·|MB|=|MC|·|MD|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·石家莊一模)祖暅?zhǔn)悄媳背瘯r(shí)期的偉大數(shù)學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖去一個(gè)圓錐所得的幾何體,圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿足祖暅原理的兩個(gè)幾何體為(  )

A. ①② B. ①③

C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ADC=90°,CDABADCDAB=2,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體DABC.

(1)求證:AD⊥平面BCD

(2)求三棱錐CABD的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦點(diǎn)的坐標(biāo)為 的坐標(biāo)為,且經(jīng)過(guò)點(diǎn), .

1)求橢圓的方程;

(2)設(shè)過(guò)的直線與橢圓交于兩不同點(diǎn),在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形?若存在,求出直線的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證:存在唯一的,使得曲線在點(diǎn)處的切線的斜率為

(Ⅲ)比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點(diǎn)為原點(diǎn),極軸為的正半軸,取相同的長(zhǎng)度單位建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)).

(1)求圓的極坐標(biāo)方程;

(2)設(shè)與圓的交點(diǎn)為, 軸的交點(diǎn)為,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案