a=90.9,b=270.48,c=(
1
3
)-1.5
,則a,b,c的大小順序為( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、c>a>b
考點:對數(shù)值大小的比較
專題:函數(shù)的性質及應用
分析:考察指數(shù)函數(shù)y=3x在R上單調遞增,即可得出.
解答: 解:考察函數(shù)y=3x在R上單調遞增,
a=31.8,b=270.48=31.44,c=31.5
∴a>c>b.
故選:B.
點評:本題考查了指數(shù)函數(shù)的單調性、指數(shù)冪的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+
a
2x+1
(a∈R)

(Ⅰ)是否存在實數(shù)a的值,使f(x)為奇函數(shù)?若存在,求出a的值;若不存在,說明理由;
(Ⅱ)若a=1,t(2x+1)f(x)>2x-2對x∈R恒成立,求實數(shù)f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種商品在最近30天內的價格f(t)(元/件)與時間t(天)的函數(shù)關系是f(t)=t+10(0<t≤30,t∈N),銷售量g(t)(件)與時間t(天)的函數(shù)關系是g(t)=-t+35(0<t≤30,t∈N),那么,這種商品的日銷售金額的最大值是
 
元,此時t=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosx-
1
2
sin(2x-
π
3
).
(1)求f(x)的最小正周期;
(2)求f(x)在[0,
π
2
]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(lgx)=x,則f(2)=(  )
A、lg2
B、2
C、102
D、210

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

1
3
+|-2
1
3
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

以下說法錯誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、若p∧q為假命題,則p,q均為假命題
D、若命題p:?x0∈R,使得x02+x0+1<0,則﹁p:?x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A滿足{1,2}⊆A⊆{1,2,3,4},則集合A的個數(shù)為( 。
A、8B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
①若0>a>b,則
1
a
1
b
;
②x>0,x+
1
x-1
的最小值為3;
③橢圓
x2
4
+
y2
3
=1比橢圓
x2
3
+
y2
2
=1更接近于圓;
④設A,B為平面內兩個定點,若有|PA|+|PB|=2,則動點P的軌跡是橢圓;
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

同步練習冊答案