以下說法錯(cuò)誤的是( 。
A、命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”
B、“x=1”是“x2-3x+2=0”的充分不必要條件
C、若p∧q為假命題,則p,q均為假命題
D、若命題p:?x0∈R,使得x02+x0+1<0,則﹁p:?x∈R,都有x2+x+1≥0
考點(diǎn):四種命題
專題:簡易邏輯
分析:寫出原命題的逆否命題,可判斷A;根據(jù)充要條件的定義,可判斷B;根據(jù)復(fù)合命題真假判斷的真值表,可判斷C;根據(jù)特稱命題的否定方法,可判斷D.
解答: 解:命題“若x2-3x+2=0,則x=1”的逆否命題是“若x≠1,則x2-3x+2≠0”,故A正確;
“x=1”時(shí),“x2-3x+2=0”成立,故“x=1”是“x2-3x+2=0”的充分條件;
“x2-3x+2=0”時(shí),“x=1或x=2”,即“x=1”不一定成立,故“x=1”是“x2-3x+2=0”的不必要條件,故B正確;
若p∧q為假命題,則p,q存在至少一個(gè)假命題,不一定全為假命題,故C錯(cuò)誤;
命題p:?x0∈R,使得x02+x0+1<0,則﹁p:?x∈R,都有x2+x+1≥0,故D正確;
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是四種命題,充要條件,復(fù)合命題,特稱命題,是簡單邏輯的綜合考查,難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
a
x

(1)判斷f(x)的奇偶性并說明理由;
(2)當(dāng)a=16時(shí),判斷f(x)在x∈(0,2]上的單調(diào)性并用定義證明;
(3)當(dāng)a=16時(shí),若對(duì)任意x∈(0,+∞),不等式f(x)>m-
m-1
+9恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=3;則奇函數(shù)f(x)的值域是( 。
A、(-∞,-3]∪[3,+∞)
B、(-∞,-3]∪[3,+∞)∪{0}
C、[-3,3]
D、{-3,0,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=90.9,b=270.48,c=(
1
3
)-1.5
,則a,b,c的大小順序?yàn)椋ā 。?/div>
A、a>b>c
B、a>c>b
C、b>a>c
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,滿足:a3a7=-16,a4+a6=0,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合U={1,2,3,4,5},A={1,2,3},B={2,4},則圖中陰影部分所表示的集合是( 。
A、{1,3,4}
B、{2,4}
C、{4,5}
D、{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三個(gè)數(shù)0.89,90.8,log0.89的大小關(guān)系為( 。
A、0.89<90.8<log0.89
B、log0.89<0.89<90.8
C、log0.89<90.8<0.89
D、0.89<log0.89<90.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},求A∩B;
(2)已知C={(x,y)|y=x2+1,x∈R},D={(x,y)|y=x+1,x∈R},求C∩D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)當(dāng)m=
5
4
時(shí),判斷圓C與直線l的位置關(guān)系;
(2)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;
(3)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且以PQ為直徑的圓經(jīng)過O點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案