【題目】已知分別為雙曲線的左、右焦點,M為雙曲線右支上一點且滿足,若直線與雙曲線的另一個交點為N,則的面積為__________.
科目:高中數學 來源: 題型:
【題目】已知公差不為0的等差數列{an},其前n項和為Sn,若S10=100,a1,a2,a5成等比數列.
(1)求{an}的通項公式;
(2)bn=anan+1+an+an+1+1,求數列的前n項和Tn.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,底面為正方形的四棱錐P-ABCD中,AB=2,PA=4,PB=PD=,AC與BD相交于點O,E為PD中點.
(1)求證:EO//平面PBC;
(2)設線段BC上點F滿足CF=2BF,求銳二面角E-OF-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖已知橢圓,是長軸的一個端點,弦過橢圓的中心,且,.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于且不重合的兩點,且的平分線總是垂直于軸,是否存在實數,使得,若存在,請求出的最大值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結M,N兩地之間的鐵路線是圓心在上的一段圓弧,若點M在點O正北方向3公里;點N到的距離分別為4公里和5公里.
(1)建立適當的坐標系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學擬在點O的正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4公里,并且鐵路上任意一點到校址的距離不能小于公里,求該校址距點O的最短距離(注:校址視為一個點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“有黑掃黑、無黑除惡、無惡治亂”,維護社會穩(wěn)定和和平發(fā)展.掃黑除惡期間,大量違法分子主動投案,某市公安機關對某月連續(xù)7天主動投案的人員進行了統(tǒng)計,表示第天主動投案的人數,得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
3 | 4 | 5 | 5 | 5 | 6 | 7 |
(1)若與具有線性相關關系,請根據上表提供的數據,用最小二乘法求出關于的線性回歸方程;
(2)判定變量與之間是正相關還是負相關.(寫出正確答案,不用說明理由)
(3)預測第八天的主動投案的人數(按四舍五入取到整數).
參考公式:, ./span>
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com