【題目】如圖,直三棱柱 中, 分別是 的中點,
(Ⅰ)證明: ∥平面 ;
(Ⅱ)求銳二面角 的余弦值.

【答案】解:

(Ⅰ)連結 ,交 于點 ,連結 ,則 的中點,因為 的中點,所以 ,又因為 平面 , 平面 , ∥平面

(Ⅱ)由 ,可知 ,以 為坐標原點, 方向為 軸正方向, 方向為 軸正方向, 方向為 軸正方向,建立空間直角坐標系

,

, ,

是平面 的法向量,則

可取 .

同理,設 是平面 的法向量,則

可取 .從而

所以銳二面角 的余弦值為


【解析】(I)證明線面平行,關鍵是證明線面平行,因此連結 ,交 于點 O,再利用三角形相似即可。
(II)在空間求二面角,我們一般是建系求點,得法向量,再應用夾角公式即可。
【考點精析】利用直線與平面平行的判定對題目進行判斷即可得到答案,需要熟知平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線及點.

1)證明直線過某定點,并求該定點的坐標;

(2)當點到直線的距離最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于MN兩點,QMN的中點.

(1)求圓A的方程;

(2)當|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋擲兩顆骰子,計算:

1)事件兩顆骰子點數(shù)相同的概率;

2)事件點數(shù)之和小于7”的概率;

3)事件點數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年1曰8日,中共中央、國務院隆重舉行國家科學技術獎勵大會,在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領經濟社會發(fā)展的強勁動力.某科研單位在研發(fā)新產品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測得該產品的性能指標值與這種新材料的含量(單位:克)的關系為:當時, 的二次函數(shù);當時, .測得數(shù)據(jù)如表(部分)

(1)求關于的函數(shù)關系式;

(2)其函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司一年需購買某種原料600噸,設公司每次都購買,每次運費為3萬元,一年的總存儲費為萬元,一年的總運費與總存儲費之和為(單位:萬元)

1)試用解析式得表示成的函數(shù);

2)當為何值時, 取得最小值并求出的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是邊長為 的正方形, 平面 , , , 與平面 所成角為

(Ⅰ)求證: 平面
(Ⅱ)求二面角 的余弦值.
(Ⅲ)設點 是線段 上一個動點,試確定點 的位置,使得 平面 ,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】集合由滿足以下性質的函數(shù)組成:①上是增函數(shù);②對于任意的 .已知函數(shù), .

(1)試判斷 是否屬于集合,并說明理由;

(2)將(1)中你認為屬于集合的函數(shù)記為.

(ⅰ)試用列舉法表示集合;

(ⅱ)若函數(shù)在區(qū)間上的值域為,求實數(shù) 的取值范圍.

查看答案和解析>>

同步練習冊答案