【題目】“珠算之父”程大為是我國明代偉大數(shù)學(xué)家,他的應(yīng)用數(shù)學(xué)巨著《算法統(tǒng)綜》的問世,標(biāo)志著我國的算法由籌算到珠算轉(zhuǎn)變的完成,程大位在《算法統(tǒng)綜》中常以詩歌的形式呈現(xiàn)數(shù)學(xué)問題,其中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)三升九,上稍四節(jié)儲三升,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識求得中間兩節(jié)的容積為( )

A. B. C. D.

【答案】B

【解析】試題分析:要按依次盛米容積相差同一數(shù)量的方式盛米,設(shè)相差的同一數(shù)量為升,下端第一節(jié)盛米升,由題意得,解得,所以中間兩節(jié)盛米的容積為: (升),故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某軟件公司新開發(fā)一款學(xué)習(xí)軟件,該軟件把學(xué)科知識設(shè)計為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過一關(guān)都獎勵若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎勵方案:第一種,每闖過一關(guān)獎勵40慧幣;第二種,闖過第一關(guān)獎勵40慧幣,以后每一關(guān)比前一關(guān)多獎勵4慧幣;第三種,闖過第一關(guān)獎勵慧幣,以后每一關(guān)比前一關(guān)獎勵翻一番(即增加1倍).游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎勵方案.

(1)設(shè)闖過關(guān)后三種獎勵方案獲得的慧幣總數(shù)依次為,試求出的表達式;

(2)如果你是一名闖關(guān)者,為了得到更多的慧幣,你應(yīng)如何選擇獎勵方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)求函數(shù)上的最值;

II)已知函數(shù),求證:恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的方程為拋物線上一點,為拋物線的焦點.

I)求;

II)設(shè)直線與拋物線有唯一公共點,且與直線相交于點,試問,在坐標(biāo)平面內(nèi)是否存在點,使得以為直徑的圓恒過點?若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)銳角三角形的內(nèi)角的對邊分別為,且.

(1)求的大;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.

(1)從袋中隨機取出兩個球,求取出的球的編號之和不大于4的概率.

(2)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n,求n<m+2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,下面結(jié)論正確的個數(shù)是( )

①函數(shù)的最小正周期是;

②函數(shù)在區(qū)間上是增函數(shù);

③函數(shù)的圖象關(guān)于直線對稱;

④函數(shù)的圖象可由函數(shù)的圖象向左平移個單位長度得到

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國好聲音The Voice of China》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日正式在浙江衛(wèi)視播出.每期節(jié)目有四位導(dǎo)師參加.導(dǎo)師背對歌手,當(dāng)每位參賽選手演唱完之前有導(dǎo)師為其轉(zhuǎn)身,則該選手可以選擇加入為其轉(zhuǎn)身的導(dǎo)師的團隊中接受指導(dǎo)訓(xùn)練.已知某期《中國好聲音》中,6位選手演唱完后,四位導(dǎo)師為其轉(zhuǎn)身的情況如下表所示:

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導(dǎo)師的轉(zhuǎn)身情況.

1請列出所有的基本事件;

2求兩人中恰好其中一位為其轉(zhuǎn)身的導(dǎo)師不少于3人,而另一人為其轉(zhuǎn)身的導(dǎo)師不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當(dāng)λ為何值時,平面BEF⊥平面ACD ?

查看答案和解析>>

同步練習(xí)冊答案