【題目】已知函數(shù),函數(shù),其中是自然對數(shù)的底數(shù).
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè)函數(shù)(),討論的單調(diào)性;
(3)若對任意,恒有關(guān)于的不等式成立,求實數(shù)的取值范圍.
【答案】(1).(2)答案見解析.(3)
【解析】
(1)由函數(shù),求導(dǎo)得到, 再求得,,寫出切線方程.
(2)易得,由在上恒成立,根據(jù),分,討論求解.
(3)根據(jù)對任意,恒有關(guān)于的不等式成立,轉(zhuǎn)化為,對任意恒成立,設(shè)(,用導(dǎo)數(shù)法求其最小值即可.
(1)因為
所以,
所以.
因為,
所以,
即所求曲線在點(diǎn)處的切線方程為.
(2)易知,函數(shù)的定義域為,,
且有
.
因為在上恒成立,
所以①當(dāng)時,在上恒成立,此時,
所以,在區(qū)間上單調(diào)遞增.
②當(dāng)時,由,即,解得;
由,即,解得.
所以,在區(qū)間上單調(diào)遞減;
在區(qū)間上單調(diào)遞增.
(3)因為對任意,恒有關(guān)于的不等式成立,
所以 ,對任意恒成立,
設(shè)().
易得,.
令,,
所以.
顯然,當(dāng)時,恒成立.
所以函數(shù)在上單調(diào)遞減,所以,
即在恒成立.
所以,函數(shù)在單調(diào)遞減.
所以有,
所以.
故所求實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時,f(x)=ex﹣cosx,則不等式f(2x﹣1)+f(x﹣2)>0的解集為( )
A.(﹣∞,1)B.(﹣∞,)C.(,+∞)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國有四大國粹:京劇、武術(shù)、中醫(yī)和書法.某大學(xué)開設(shè)這四門課供學(xué)生選修,男生甲選其中三門課進(jìn)行學(xué)習(xí),已知他選修了京劇,則他選修書法的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有教師400人,其中高中教師240人.為了了解該校教師每天課外鍛煉時間,現(xiàn)利用分層抽樣的方法從該校教師中隨機(jī)抽取了100名教師進(jìn)行調(diào)查,統(tǒng)計其每天課外鍛煉時間(所有教師每天課外鍛煉時間均在分鐘內(nèi)),將統(tǒng)計數(shù)據(jù)按,,,…,分成6組,制成頻率分布直方圖如下:假設(shè)每位教師每天課外鍛煉時間相互獨(dú)立,并稱每天鍛煉時間小于20分鐘為缺乏鍛煉.
(1)試估計本校教師中缺乏鍛煉的人數(shù);
(2)從全市高中教師中隨機(jī)抽取3人,若表示每天課外鍛煉時間少于10分鐘的人數(shù),以這60名高中教師每天課外鍛煉時間的頻率代替每名高中教師每天課外鍛煉時間發(fā)生的概率,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,若在,處的導(dǎo)數(shù)相等,證明:;
(2)若有兩個不同的零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】角谷猜想,也叫猜想,是由日本數(shù)學(xué)家角谷靜夫發(fā)現(xiàn)的,是指對于每一個正整數(shù),如果它是奇數(shù),則對它乘3再加1;如果它是偶數(shù),則對它除以2,如此循環(huán)最終都能夠得到1.如:取,根據(jù)上述過程,得出6,3,10,5,16,8,4,2,1,共9個數(shù).若,根據(jù)上述過程得出的整數(shù)中,隨機(jī)選取兩個不同的數(shù),則這兩個數(shù)都是偶數(shù)的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新高考取消文理科,實行“3+3”,成績由語文、數(shù)學(xué)、外語統(tǒng)一高考成績和自主選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成.為了解各年齡層對新高考的了解情況,隨機(jī)調(diào)查50人(把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年),并把調(diào)查結(jié)果制成如表:
(1)請根據(jù)上表完成下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為對新高考的了解與年齡(中青年、中老年)有關(guān)?
附:K2.
(2)現(xiàn)采用分層抽樣的方法從中老年人中抽取8人,再從這8人中隨機(jī)抽取2人進(jìn)行深入調(diào)查,求事件A:“恰有一人年齡在[45,55)”發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:存在,對任意的,都有(為常數(shù)),則稱具有性質(zhì)
(1)若無窮數(shù)列具有性質(zhì),且,求的值
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列,,,,判斷是否具有性質(zhì),并說明理由.
(3)設(shè)無窮數(shù)列既具有性質(zhì),又具有性質(zhì),其中互質(zhì),求證:數(shù)列具有性質(zhì)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(0,2),B(0,﹣2),動點(diǎn)P(x,y)滿足PA,PB的斜率之積為.
(1)求動點(diǎn)P的軌跡C的方程;
(2)已知直線l:y=kx+m,C的右焦點(diǎn)為F,直線l與C交于M,N兩點(diǎn),若F是△AMN的垂心,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com