【題目】已知函數(shù)

(1)若對任意,恒成立,求的值;

(2)設(shè),若沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1) (2)

【解析】

1)對函數(shù)求導(dǎo)得 ,通過單調(diào)性可知當(dāng)時(shí),函數(shù)取得極大值;若對任意,上恒成立,

當(dāng)且僅當(dāng),,即恒成立,得,構(gòu)造函數(shù),通過單調(diào)性求的值.

2,求導(dǎo)得

構(gòu)造函數(shù),則在區(qū)間內(nèi)存在唯一零點(diǎn),通過單調(diào)性求得的取值范圍.

解:(1),

當(dāng)時(shí),上是增函數(shù);

當(dāng)時(shí),上是減函數(shù);

故當(dāng)時(shí),函數(shù)取得極大值.

若對任意上恒成立,

當(dāng)且僅當(dāng),,即恒成立,

.

設(shè),則.

當(dāng)時(shí),是增函數(shù);

當(dāng)時(shí),是減函數(shù),

所以當(dāng)時(shí),取得極大值,得.

所以,可得.

(2),所以

,

設(shè),則上是增函數(shù),

,

所以在區(qū)間內(nèi)存在唯一零點(diǎn),

.

當(dāng)時(shí),,即;

當(dāng)時(shí),,即,所以上是減函數(shù),

上是增函數(shù),所以.

因?yàn)?/span>沒有零點(diǎn),所以,

,所以的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某餐廳通過查閱了最近5次食品交易會參會人數(shù) (萬人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會人數(shù) (萬人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無償返還,據(jù)悉本次交易大會大約有15萬人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測餐廳應(yīng)購買多少袋原材料,才能獲得最大利潤,最大利潤是多少?(注:利潤銷售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊黃銅板上插著三根寶石針,在其中一根針上從下到上穿好由大到小的若干金片.若按照下面的法則移動(dòng)這些金片:每次只能移動(dòng)一片金片;每次移動(dòng)的金片必須套在某根針上;大片不能疊在小片上面.設(shè)移完n片金片總共需要的次數(shù)為an,可推得a1=1,an+1=2an+1.如圖是求移動(dòng)次數(shù)在1000次以上的最小片數(shù)的程序框圖模型,則輸出的結(jié)果是( 。

A. 8B. 9C. 10D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P—ABC中,平面PAC⊥平面ABCABBC,PAPC.點(diǎn)EF,O分別為線段PA,PB,AC的中點(diǎn),點(diǎn)G是線段CO的中點(diǎn).

1)求證:FG∥平面EBO;

2)求證:PABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓的中心為原點(diǎn),長軸在軸上,上頂點(diǎn)為,左右焦點(diǎn)分別為,線段,的中點(diǎn)分別為,且是面積為4的直角三角形,過作直線交橢圓于兩點(diǎn),使,則直線的斜率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的方程為,若拋物線過點(diǎn),且以圓0的切線為準(zhǔn)線,為拋物線的焦點(diǎn),點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)過點(diǎn)作直線交曲線兩點(diǎn),關(guān)于軸對稱,請問:直線是否過軸上的定點(diǎn),如果不過請說明理由,如果過定點(diǎn),請求出定點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,邊長為a的空間四邊形ABCD中,∠BCD=90°,平面ABD⊥平面BCD,則異面直線AD與BC所成角的大小為( 。

A. 30°B. 45°C. 60°D. 90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)時(shí)取得極值,求實(shí)數(shù)的值;

2)若對任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi)某知名企業(yè)為適應(yīng)發(fā)展的需要,計(jì)劃加大對研發(fā)的投入,據(jù)了解,該企業(yè)原有100名技術(shù)人員,年人均投入萬元,現(xiàn)把原有技術(shù)人員分成兩部分:技術(shù)人員和研發(fā)人員,其中技術(shù)人員名(),調(diào)整后研發(fā)人員的年人均投入增加%,技術(shù)人員的年人均投入調(diào)整為萬元.

1)要使這名研發(fā)人員的年總投入恰好與調(diào)整前100名技術(shù)人員的年總投入相同,求調(diào)整后的技術(shù)人員的人數(shù);

2)是否存在這樣的實(shí)數(shù),使得調(diào)整后,在技術(shù)人員的年人均投入不減少的情況下,研發(fā)人員的年總投入始終不低于技術(shù)人員的年總投入?若存在,求出的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案