【題目】某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),顧客消費(fèi)每超過600元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性抽出3個(gè)小球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸到2個(gè)紅球則打6折,若摸到1個(gè)紅球,則打7折;若沒有摸到紅球,則不打折;
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回的摸取,連續(xù)3次,每摸到1個(gè)紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,則該顧客選擇哪種抽獎(jiǎng)方案更合適?
【答案】
(1)解:選擇方案一,若享受到免單優(yōu)惠,則需要摸出3個(gè)紅球,
設(shè)一位顧客享受免單優(yōu)惠為事件A,則
P(A)= = ,
所以兩位顧客均享受免單優(yōu)惠的概率為
P(A)P(A)=
(2)解:若選擇方案一,設(shè)付款金額為X元,則
X可能的取值為0,600,700,1000;
計(jì)算P(X=0)= = ,
P(X=600)= = ,
P(X=700)= = ,
P(X=1000)= = ;
所以隨機(jī)變量X的分布列為:
X | 0 | 600 | 700 | 1000 |
P |
|
|
|
|
X的數(shù)學(xué)期望為:
E(X)=0× +600× +700× +1000× = (元);
若選擇方案二,設(shè)摸到紅球的個(gè)數(shù)為Y,付款金額為Z元,
則Z=1000﹣200Y,
由已知可得Y~B(3, ),
數(shù)學(xué)期望為E(Y)=3× = ,
所以E(Z)=E(1000﹣200Y)=1000﹣200E(Y)=820(元);
因?yàn)镋(X)<E(Z),
所以該顧客選擇第一種抽獎(jiǎng)方案更合適
【解析】(1)選擇方案一,計(jì)算一位顧客享受免單優(yōu)惠的概率,從而求出兩位顧客均享受免單優(yōu)惠的概率值;(2)選擇方案一時(shí)付款金額X的取值,計(jì)算對(duì)應(yīng)的概率值,寫出分布列,計(jì)算數(shù)學(xué)期望值; 選擇方案二時(shí),設(shè)摸到紅球的個(gè)數(shù)為Y,付款金額為Z元,計(jì)算Z的數(shù)學(xué)期望,比較即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)點(diǎn),需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 是等腰梯形, , , ,在梯形 中, ,且 , 平面 .
(1)求證: 平面 ;
(2)若二面角 的大小為 ,求 的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn=a2n+b,且a1=3.
(1)求a、b的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》有如下問題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形, 與交于點(diǎn), 底面,為的中點(diǎn).
(1).求證: 平面;
(2).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為 ,且它的一個(gè)焦點(diǎn) 的坐標(biāo)為 .
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過焦點(diǎn) 的直線與橢圓相交于 兩點(diǎn), 是橢圓上不同于 的動(dòng)點(diǎn),試求 的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某游艇制造廠研發(fā)了一種新游艇,今年前5個(gè)月的產(chǎn)量如下:
(1)設(shè)關(guān)于的回歸直線方程為現(xiàn)根據(jù)表中數(shù)據(jù)已經(jīng)正確計(jì)算出了的值為,試求的值,并估計(jì)該廠月份的產(chǎn)量;(計(jì)算結(jié)果精確到)
(Ⅱ)質(zhì)檢部門發(fā)現(xiàn)該廠月份生產(chǎn)的游艇都存在質(zhì)量問題,要求廠家召回;現(xiàn)有一旅游公司曾向該廠購買了今年前兩個(gè)月生產(chǎn)的游艇艘,求該旅游公司有游艇被召回的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,AD∥BC,AD=2BC=2,PC=2,△ABC是以AC為斜邊的等腰直角三角形,E是PD的中點(diǎn).
(1)求證:平面EAC⊥平面PCD;
(2)求直線PA與平面EAC所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com