【題目】將圓周上的所有點(diǎn)進(jìn)行三染色。證明:存在無窮多個等腰三角形,其頂點(diǎn)均為圓周上的同色點(diǎn)。

【答案】見解析

【解析】

先證明一個引理.

引理 對一個正十三邊形的頂點(diǎn)進(jìn)行三染色,則必有一個三頂點(diǎn)同色的等腰三角形.

證明 反證法.

假設(shè)存在一種染色方法,使得在正十三邊形中不存在同色等腰三角形.

由抽屜原理,知至少有五個點(diǎn)同色.

下面考慮這五個點(diǎn)的分布情形.

1 若這五個點(diǎn)中任意兩點(diǎn)不相鄰,設(shè)這五個中相鄰兩點(diǎn)所間隔的邊數(shù)依次為a、b、c、d、e,則a+b+c+d+e=13,且a、b、c、d、e≥2.

故至少有兩個值為2,其余三個要么均為3 ,要么還存在第三個值為2,即a、b、c、d、e中存在三個數(shù)相等.這三條線段有六個端點(diǎn),而同色點(diǎn)只有五個.因此,至少有兩條線段有公共頂點(diǎn),則構(gòu)成了等腰三角形,與假設(shè)矛盾.

2 若這五個點(diǎn)中存在相鄰的點(diǎn),不妨設(shè)為.據(jù)假設(shè),知不存在同色等腰三角形.從而,排除點(diǎn).如圖.

若點(diǎn)也染了該色,則排除點(diǎn),在剩下的點(diǎn)中任選兩個染色,均與假設(shè)矛盾.故點(diǎn)染了其他顏色.由對稱性,知點(diǎn)也染了其他顏色.

若點(diǎn)染了該色,則排除點(diǎn),在剩下的點(diǎn)中任選兩個染色,均與假設(shè)矛盾.故點(diǎn)染了其他顏色.由對稱性,知點(diǎn)也染了其他顏色.

在剩下的點(diǎn)中任選三個染色,均與假設(shè)矛盾.

因此,假設(shè)不成立.

引理得證.

由于圓周上的點(diǎn)可以構(gòu)成無窮多個正十三邊形,據(jù)引理,知存在無窮多個同色等腰三角形.

又由于只有三種顏色,則存在無窮多個等腰三角形,其頂點(diǎn)均為圓周上的同色點(diǎn).

證明 記△DEF的外接圓、△BHC的外接圓分別為.

因為B、F、H、D四點(diǎn)共圓,所以,PB·PH=PD·PF.

于是,點(diǎn)P在圓的根軸上.

類似地,由C、E、H、D四點(diǎn)共圓,知點(diǎn)Q 在圓的根軸上.

由于點(diǎn)S在圓的根軸PQ上,故點(diǎn)S在圓上.

以H為反演中心,-HA·HD為反演冪作反演變換,則

.

由于M為EF與圓的交點(diǎn),S為圓的交點(diǎn),從而,.

因此,M、H、S三點(diǎn)共線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代的數(shù)學(xué)專著,其中的“更相減損術(shù)”可以用來求兩個數(shù)的最大公約數(shù),原文是:可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也,以等數(shù)約之. 翻譯為現(xiàn)代的語言如下:如果需要對分?jǐn)?shù)進(jìn)行約分,那么可以折半的話,就折半(也就是用2來約分).如果不可以折半的話,那么就比較分母和分子的大小,用大數(shù)減去小數(shù),互相減來減去,一直到減數(shù)與差相等為止,用這個相等的數(shù)字來約分,現(xiàn)給出“更相減損術(shù)”的程序框圖如圖所示,如果輸入的,則輸出的( )

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)“25周歲以下分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組工人的頻率.

)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為生產(chǎn)能手,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認(rèn)為生產(chǎn)能手與工人所在的年齡組有關(guān)?

附表:

P

0100

0010

0001

k

2706

6635

10828

,(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法:

①如果一條線段的中點(diǎn)在一個平面內(nèi),那么它的兩個端點(diǎn)也在這個平面內(nèi);

②兩組對邊分別相等的四邊形是平行四邊形;

③兩組對邊分別平行的四邊形是平行四邊形;

④若一個四邊形有三條邊在同一個平面內(nèi),則第四條邊也在這個平面內(nèi);

⑤點(diǎn)在平面外,點(diǎn)和平面內(nèi)的任意一條直線都不共面.

其中所有正確說法的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)作為藍(lán)色海洋教育特色學(xué)校,隨機(jī)抽取100名學(xué)生,進(jìn)行一次海洋知識測試,按測試成績(假設(shè)考試成績均在[65,90)內(nèi))分組如下:第一組[65,70),第二組 [70,75),第三組[75,80),第四組 [80,85),第五組 [85,90).得到頻率分布直方圖如圖C34.

(1)求測試成績在[80,85)內(nèi)的頻率;

(2)從第三、四、五組學(xué)生中用分層抽樣的方法抽取6名學(xué)生組成海洋知識宣講小組,定期在校內(nèi)進(jìn)行義務(wù)宣講,并在這6名學(xué)生中隨機(jī)選取2名參加市組織的藍(lán)色海洋教育義務(wù)宣講隊,求第四組至少有1名學(xué)生被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將下列問題的解答過程補(bǔ)充完整.

依次計算數(shù)列,,的前四項的值,由此猜測的有限項的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.

解:計算 ,

,

,

,

由此猜想 .(*

下面用數(shù)學(xué)歸納法證明這一猜想.

i)當(dāng)時,左邊,右邊,所以等式成立.

(ⅱ)假設(shè)當(dāng)時,等式成立,即

那么,當(dāng)時,

等式也成立.

根據(jù)(i)和(ⅱ)可以斷定,(*)式對任何都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,BC的對邊分別為a,b,c,,且

1)求A;

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校數(shù)學(xué)學(xué)院為了對2018年錄取的大一新生有針對性地進(jìn)行教學(xué).從大一新生中隨機(jī)抽取40名,對他們在2018年高考的數(shù)學(xué)成績進(jìn)行調(diào)查,統(tǒng)計發(fā)現(xiàn)40名新生的數(shù)學(xué)分?jǐn)?shù)分布在內(nèi).當(dāng)時,其頻率.

(1)求的值;

(2)請在答題卡中畫出這40名新生高考數(shù)學(xué)分?jǐn)?shù)的頻率分布直方圖,并估計這40名新生的高考數(shù)學(xué)分?jǐn)?shù)的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

(3)若高考數(shù)學(xué)分?jǐn)?shù)不低于120分的為優(yōu)秀,低于120分的為不優(yōu)秀,則按高考成績優(yōu)秀與否從這40名新生中用分層抽樣的方法抽取4名學(xué)生,再從這4名學(xué)生中隨機(jī)抽取2名,求這2名學(xué)生的高考成績均為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機(jī)在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:

一次購物款(單位:元)

顧客人數(shù)

統(tǒng)計結(jié)果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀(jì)念品.

(Ⅰ)試確定, 的值,并估計每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;

(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀(jì)念品的數(shù)量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案