已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,它的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線上,則雙曲線的方程為( 。
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、
x2
4
-
y2
12
=1
D、
x2
9
-
y2
27
=1
考點(diǎn):拋物線的簡(jiǎn)單性質(zhì),雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用雙曲線的漸近線的方程可得
b
a
=
3
,再利用拋物線的準(zhǔn)線x=-6=-c及c2=a2+b2即可得出.
解答: 解:∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線方程是y=
3
x,
b
a
=
3

∵雙曲線的一個(gè)焦點(diǎn)在拋物線y2=24x的準(zhǔn)線x=-6上,
∴c=6.
聯(lián)立
c2=a2+b2
b
a
=
3
c=6
,
解得
a2=9
b2=27

∴此雙曲線的方程為
x2
9
-
y2
27
=1
,
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是拋物線的簡(jiǎn)單性質(zhì)和雙曲線的簡(jiǎn)單性質(zhì),熟練掌握?qǐng)A錐曲線的圖象和性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1,-
3
2
)
在橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)上,橢圓C的左焦點(diǎn)為(-1,0)
(1)求橢圓C的方程;
(2)直線l過點(diǎn)T(m,0)交橢圓C于M、N兩點(diǎn),AB是橢圓C經(jīng)過原點(diǎn)O的弦,且MN∥AB,問是否存在正數(shù)m,使
|AB|2
|MN|
為定值?若存在,請(qǐng)求m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1+an=2n-3,若a1=2則a21-a20=( 。
A、9B、7C、5D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了測(cè)量隧道兩口之間AB的長(zhǎng)度,對(duì)給出的四組數(shù)據(jù),求解計(jì)算時(shí),較為簡(jiǎn)便易行的一組是(  )
A、a,b,γ
B、a,b,α
C、a,b,β
D、α,β,a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+
1
ex

(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)若對(duì)所有x≤0都有f(x)≥ax+1,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(0,
7
3
),B(7,0)的直線l1與過(2,1),(3,k+1)的直線l2和兩坐標(biāo)軸圍成的四邊形內(nèi)接于一個(gè)圓,則實(shí)數(shù)k的值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0|)的圖象如下圖所示,則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知坐標(biāo)原點(diǎn)O在圓x2+y2-x+y+m=0外,則m的取值范圍是( 。
A、0<m<
1
2
B、m<
1
2
C、m≤
1
2
D、m>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
y≥1
y≤2x-1
x+y≤m
,若目標(biāo)函數(shù)z=x-y+1的最小值為0,則m的值等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案