【題目】給出下列四個命題:
①函數(shù)與函數(shù)表示同一個函數(shù);
②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)的圖像可由的圖像向右平移1個單位得到;
④的最小值為1
⑤對于函數(shù)f(x),若f(-1)f(3)<0,則方程在區(qū)間[-1,3]上有一實(shí)根;
其中正確命題的序號是 .(填上所有正確命題的序號)
【答案】③④
【解析】
試題分析:對于①,函數(shù)y=|x|的定義域?yàn)镽,與函數(shù)的定義域?yàn)閇0,+∞),故函數(shù)y=|x|與函數(shù)不表示同一個函數(shù),故①錯誤;
對于②,函數(shù)為奇函數(shù),但它的圖象不通過直角坐標(biāo)系的原點(diǎn),故②錯誤;
對于③,將函數(shù)的圖象向右平移1個單位得到函數(shù)的圖象,故③正確;
對于④,由于|x|≥0,故,因此的最小值為1,故④正確;
對于⑤,函數(shù),滿足f(-1)f(3)<0,但方程f(x)=0在區(qū)間[-1,3]上沒有實(shí)根,故⑤錯誤;
綜上所述,其中正確命題的序號是 ③④.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2msin x-2cos2x+-4m+3,且函數(shù)f(x)的最小值為19,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若有兩個不相等的實(shí)數(shù)根,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)平面中,的兩個頂點(diǎn)為,平面內(nèi)兩點(diǎn)、同時(shí)滿足:①;②;③.
(1)求頂點(diǎn)的軌跡的方程;
(2)過點(diǎn)作兩條互相垂直的直線,直線與點(diǎn)的軌跡相交弦分別為,設(shè)弦的中點(diǎn)分別為.
①求四邊形的面積的最小值;
②試問:直線是否恒過一個定點(diǎn)?若過定點(diǎn),請求出該定點(diǎn),若不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的菱形中,,點(diǎn)分別是邊,的中點(diǎn),,沿將翻折到,連接,得到如圖的五棱錐,且.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程有實(shí)數(shù)根.
(1)求實(shí)數(shù)的值;
(2)若復(fù)數(shù)滿足,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為拋物線:的焦點(diǎn),點(diǎn)在拋物線上,且到原點(diǎn)的距離為.
(1)求拋物線的方程;
(2)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓(),原點(diǎn)到直線的距離為,其中:點(diǎn),點(diǎn).
(1)求該橢圓的離心率;
(2)經(jīng)過橢圓右焦點(diǎn)的直線和該橢圓交于兩點(diǎn),點(diǎn)在橢圓上, 為原點(diǎn),若,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com