【題目】直線l過原點(diǎn)(0,0),且不過第三象限,那么l的傾斜角α的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①函數(shù)與函數(shù)表示同一個(gè)函數(shù);
②奇函數(shù)的圖像一定通過直角坐標(biāo)系的原點(diǎn);
③函數(shù)的圖像可由的圖像向右平移1個(gè)單位得到;
④的最小值為1
⑤對(duì)于函數(shù)f(x),若f(-1)f(3)<0,則方程在區(qū)間[-1,3]上有一實(shí)根;
其中正確命題的序號(hào)是 .(填上所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)1件這樣的產(chǎn)品,還需增加投入0.5萬元,經(jīng)市場(chǎng)調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時(shí),銷售所得的收入為萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤(rùn)關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x);
(2)當(dāng)該公司的年產(chǎn)量為多少件時(shí),當(dāng)年所獲得的利潤(rùn)最大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù)在上具有單調(diào)性,求實(shí)數(shù)的取值范圍.
(2)關(guān)于x的方程mx2+2(m+3)x+2m+14=0有兩個(gè)不同的實(shí)根,且一個(gè)大于4,另一個(gè)小于4,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由兩點(diǎn)確定的直線中,斜率不存在的是
A.(4,2)與(-4,1) B.(0,3)與(3,0)
C.(3,-1)與(2, -1) D.(-2,2)與(-2,5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的是 ( )
A. 經(jīng)過正方體任意兩條面對(duì)角線,有且只有一個(gè)平面
B. 經(jīng)過正方體任意兩條體對(duì)角線,有且只有一個(gè)平面
C. 經(jīng)過正方體任意兩條棱,有且只有一個(gè)平面
D. 經(jīng)過正方體任意一條體對(duì)角線與任意一條面對(duì)角線,有且只有一個(gè)平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間和極值;
(2)證明:當(dāng)時(shí),函數(shù)沒有零點(diǎn)(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)教師對(duì)所任教的兩個(gè)班級(jí)各抽取20名學(xué)生進(jìn)行測(cè)試,分?jǐn)?shù)分布如表:
分?jǐn)?shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
0.1 | 0.2 | |
0.2 | 0.2 | |
0.3 | 0.3 | |
0.2 | 0.2 | |
0.2 | 0.1 |
(Ⅰ)若成績(jī)120分以上(含120分)為優(yōu)秀,求從乙班參加測(cè)試的90分以上(含90分)的同學(xué)中,隨機(jī)任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的×列聯(lián)表:
優(yōu)秀 | 不優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
在犯錯(cuò)概率小于0.1的前提下,你是否有足夠的把握認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)是否優(yōu)秀與班級(jí)有關(guān)系?
參考公式:,其中
≥ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)為圓心的圓過原點(diǎn).
(1)設(shè)直線與圓交于點(diǎn),若,求圓的方程;
(2)在(1)的條件下,設(shè),且分別是直線和圓上的動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com