已知函數(shù)f(x)=若函數(shù)y=|f(x)|-k(x+e2)的零點(diǎn)恰有四個(gè),則實(shí)數(shù)k的值為( )
A.e B.
C.e2 D.
D
[解析] 在坐標(biāo)平面內(nèi)畫(huà)出函數(shù)y=|f(x)|的大致圖象與直線y=k(x+e2),結(jié)合圖象可知,要使函數(shù)y=|f(x)|-k(x+e2)的零點(diǎn)恰有四個(gè),只要直線y=k(x+e2)與曲線y=ln x(x>1)相切且ke2≤2.設(shè)相應(yīng)的切點(diǎn)坐標(biāo)是(x0,y0),于是有即有x0=,-ln k=1+ke2,ke2+ln k=-1.記g(k)=ke2+ln k,注意到函數(shù)g(k)在(0,+∞)上是增函數(shù),且g=-1,因此k=,滿足條件,故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在(x+1)n的二項(xiàng)展開(kāi)式中,按x的降冪排列,只有第5項(xiàng)的系數(shù)最大,則各項(xiàng)的二項(xiàng)式系數(shù)之和為_(kāi)_______.(用數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)f(x)=若存在k使得函數(shù)f(x)的值域是[0,2],則實(shí)數(shù)a的取值范圍是( )
A.[,+∞) B.
C.(0, ] D.{2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時(shí),有f(x+1)=-f(x),且當(dāng)x∈[0,1)時(shí),f(x)=log2(x+1),給出下列命題:
①f(2 013)+f(-2 014)的值為0;
②函數(shù)f(x)在定義域上為周期是2的周期函數(shù);
③直線y=x與函數(shù)f(x)的圖象有1個(gè)交點(diǎn);
④函數(shù)f(x)的值域?yàn)?-1,1).
其中正確命題的序號(hào)有________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=2x2+px+q,g(x)=x+是定義在集合M=上的兩個(gè)函數(shù).對(duì)任意的x∈M,存在常數(shù)x0∈M,使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0).則函數(shù)f(x)在集合M上的最大值為( )
A. B.4
C.6 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若函數(shù)f(x),g(x)分別為R上的奇函數(shù)和偶函數(shù),且滿足f(x)-g(x)=ex,則有( )
A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2)
C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
甲、乙、丙3位教師安排在周一至周五中的3天值班,要求每人值班1天且每天至多安排1人,則恰好甲安排在另外兩位教師前面值班的概率是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com