【題目】求滿足下列條件的曲線方程:
(1)經(jīng)過兩條直線2x+y﹣8=0和x﹣2y+1=0的交點,且垂直于直線6x﹣8y+3=0的直線
(2)經(jīng)過點C(﹣1,1)和D(1,3),圓心在x軸上的圓.

【答案】
(1)解:由 ,解得x=3,y=2,

∴點P的坐標(biāo)是(3,2),

∵所求直線l與8x+6y+C=0垂直,

∴可設(shè)直線l的方程為8x+6y+C=0.

把點P的坐標(biāo)代入得8×3+6×2+C=0,即C=﹣36.

∴所求直線l的方程為8x+6y﹣36=0,

即4x+3y﹣18=0.


(2)解:∵圓C的圓心在x軸上,設(shè)圓心為M(a,0),由圓過點A(﹣1,1)和B(1,3),

由|MA|=|MB|可得 MA2=MB2,即(a+1)2+1=(a﹣1)2+9,求得a=2,

可得圓心為M( 2,0),半徑為|MA|= ,故圓的方程為 (x﹣2)2+y2=10.


【解析】(1)聯(lián)立方程,求出點P的坐標(biāo),利用所求直線l與6x﹣8y+3=0垂直,可設(shè)直線l的方程為8x+6y+C=0,代入P的坐標(biāo),可求直線l的方程;(2)設(shè)圓心為M(a,0),由|MA|=|MB|求得a的值,可得圓心坐標(biāo)以及半徑的值,從而求得圓的方程.
【考點精析】關(guān)于本題考查的圓的一般方程,需要了解圓的一般方程的特點:(1)①x2和y2的系數(shù)相同,不等于0.②沒有xy這樣的二次項;(2)圓的一般方程中有三個特定的系數(shù)D、E、F,因之只要求出這三個系數(shù),圓的方程就確定了;(3)、與圓的標(biāo)準(zhǔn)方程相比較,它是一種特殊的二元二次方程,代數(shù)特征明顯,圓的標(biāo)準(zhǔn)方程則指出了圓心坐標(biāo)與半徑大小,幾何特征較明顯才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解高三年級不同性別的學(xué)生對取消藝術(shù)課的態(tài)度(支持或反對),進行了如下的調(diào)查研究.全年級共有1350人,男女生比例為8:7,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為 ,通過對被抽取學(xué)生的問卷調(diào)查,得到如下2x2列聯(lián)表:

支持

反對

總計

男生

30

女生

25

總計

(Ⅰ)完成列聯(lián)表,并判斷能否有99.9%的把握認為態(tài)度與性別有關(guān)?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反對;有4名女生被抽到,其中2人支持,2人反對,現(xiàn)從這10人中隨機抽取一男一女進一步調(diào)查原因.求其中恰有一人支持一人反對的概率.
參考公式及臨界表:K2=

P(K2≥k0

0.10

0.050

0.010

0.005

0.001

k0

2.706%

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,側(cè)面ABC是一個等腰直角三角形,∠BAC=90°,底面BCD是一個等邊三角形,平面ABC⊥平面BCD,E為BD的中點,則AE與平面BCD所成角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知AA1=AB=AC,BC= AB,且AA1⊥平面ABC,點M、Q分別是BC、CC1的中點,點P是棱A1B1上的任一點.

(1)求證:AQ⊥MP;
(2)若平面ACC1A1與平面AMP所成的銳角二面角為θ,且cosθ= ,試確定點P在棱A1B1上的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不等式組 表示的平面區(qū)域為M,直線y=kx﹣1與區(qū)域M沒有公共點,則實數(shù)k的最大值為(
A.3
B.0
C.﹣3
D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點C(t, )(t∈R且t≠0)為圓心的圓經(jīng)過原點O,且與x軸交于點A,與y軸交于點B.
(1)求證:△AOB的面積為定值.
(2)設(shè)直線2x+y﹣4=0與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.
(3)在(2)的條件下,設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動點,求|PB|+|PQ|的最小值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>0,b>0)上的點P到左、右兩焦點F1 , F2的距離之和為2 ,離心率為
(1)求橢圓的方程;
(2)是否存在同時滿足①②兩個條件的直線l?
①過點M(0, );
②存在橢圓上與右焦點F2共線的兩點A、B,且A、B關(guān)于直線l對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=AA1=2,D、E分別為棱AB、BC的中點,點F在棱AA1上.
(1)證明:直線A1C1∥平面FDE;
(2)若F為棱AA1的中點,求三棱錐A1﹣DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題:
(1)利用計算機產(chǎn)生0~1之間的均勻隨機數(shù)a,則事件“3a﹣1>0”發(fā)生的概率為
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要條件;
(3)如果平面α不垂直于平面β,那么平面α內(nèi)一定不存在直線垂直于平面β;
(4)設(shè) 是非零向量,已知命題p:若 , ,則 ;命題q:若 ,則 ,則“p∨q”是真命題.
其中說法正確的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

同步練習(xí)冊答案