【題目】設,,其中a,.
Ⅰ求的極大值;
Ⅱ設,,若對任意的,恒成立,求a的最大值;
Ⅲ設,若對任意給定的,在區(qū)間上總存在s,,使成立,求b的取值范圍.
【答案】(Ⅰ)1;(Ⅱ);(Ⅲ).
【解析】
Ⅰ求出的導數,令導數大于0,得增區(qū)間,令導數小于0,得減區(qū)間,進而求得的極大值;
Ⅱ當,時,求出的導數,以及的導數,判斷單調性,去掉絕對值可得,構造函數,求得的導數,通過分離參數,求出右邊的最小值,即可得到a的范圍;
Ⅲ求出的導數,通過單調區(qū)間可得函數在上的值域為,由題意分析時,結合的導數得到在區(qū)間上不單調,所以,,再由導數求得的最小值,即可得到所求范圍.
Ⅰ,
當時,,在遞增;當時,,在遞減.
則有的極大值為;
Ⅱ當,時,,,
在恒成立,在遞增;
由,在恒成立,在遞增.
設,原不等式等價為,
即,,在遞減,
又,在恒成立,
故在遞增,,
令,,
∴
,在遞增,
即有,即;
Ⅲ,
當時,,函數單調遞增;
當時,,函數單調遞減.
又因為,,,
所以,函數在上的值域為.
由題意,當取的每一個值時,
在區(qū)間上存在,與該值對應.
時,,,
當時,,單調遞減,不合題意,
當時,時,,
由題意,在區(qū)間上不單調,所以,,
當時,,當時, 0'/>
所以,當時,,
由題意,只需滿足以下三個條件:,
,使.
,所以成立由,所以滿足,
所以當b滿足即時,符合題意,
故b的取值范圍為.
科目:高中數學 來源: 題型:
【題目】在三棱錐D-ABC中,,且,,M,N分別是棱BC,CD的中點,下面結論正確的是( )
A.B.平面ABD
C.三棱錐A-CMN的體積的最大值為D.AD與BC一定不垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】截至2019年,由新華社《瞭望東方周刊》與瞭望智庫共同主辦的"中國最具幸福感城市"調查推選活動已連續(xù)成功舉辦12年,累計推選出60余座幸福城市,全國約9億多人次參與調查,使"城市幸福感"概念深入人心.為了便于對某城市的"城市幸福感"指數進行研究,現從該市抽取若干人進行調查,繪制成如下不完整的2×2列聯(lián)表(數據單位:人).
男 | 女 | 總計 | |
非常幸福 | 11 | 15 | |
比較幸福 | 9 | ||
總計 | 30 |
(1)將列聯(lián)表補充完整,并據此判斷是否有90%的把握認為城市幸福感指數與性別有關;
(2)若感覺"非常幸福"記2分,"比較幸福"記1分,從上表男性中隨機抽取3人,記3人得分之和為,求的分布列,并根據分布列求的概率
附:,其中.
) | 0. 10 | 0. 05 | 0. 010 | 0.001 |
2.706 | 3.841 | 6. 635 | 10. 828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(k+)lnx+,k∈[4,+∞),曲線y=f(x)上總存在兩點M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (,+∞) C. [,+∞) D. [,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的左、右焦點分別為,右頂點為A,上頂點為B,且滿足向量 。
(1)若,求橢圓的標準方程;
(2)設為橢圓上異于頂點的點,以線段PB為直徑的圓經過F1,問是否存在過F2的直線與該圓相切?若存在,求出其斜率;若不存在,說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓,定義橢圓的“相關圓”的方程為,若拋物線的焦點與橢圓的一個焦點重合,且橢圓短軸的一個端點和其兩個焦點構成直角三角形.
(1)求橢圓的方程和“相關圓”的方程;
(2)若直線與圓相切,且與橢圓交于兩點,為坐標原點.
①求證:;
②求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的方程,焦點為,已知點在上,且點到點的距離比它到軸的距離大1.
(1)試求出拋物線的方程;
(2)若拋物線上存在兩動點(在對稱軸兩側),滿足(為坐標原點),過點作直線交于兩點,若,線段上是否存在定點,使得恒成立?若存在,請求出的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com