A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | $\frac{π}{4}$或$\frac{3π}{4}$ |
分析 根據(jù)αβ的取值范圍,利用同角三角函數(shù)的基本關(guān)系分別求得cosα和sinβ,由兩角和的余弦公式求得cos(α+β),則α+β的值可求.
解答 解:由α,β∈(0,$\frac{π}{2}$),sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,
∴cosα>0,sinβ>0,
cosα=$\sqrt{1-si{n}^{2}α}=\sqrt{1-(\frac{\sqrt{10}}{10})^{2}}=\frac{3\sqrt{10}}{10}$,
sinβ=$\sqrt{1-co{s}^{2}β}=\sqrt{1-(\frac{2\sqrt{5}}{5})^{2}}=\frac{\sqrt{5}}{5}$,
∴cos(α+β)=cosαcosβ-sinαsinβ
=$\frac{3\sqrt{10}}{10}×\frac{2\sqrt{5}}{5}-\frac{\sqrt{10}}{10}×\frac{\sqrt{5}}{5}=\frac{\sqrt{2}}{2}$,
由α,β∈(0,$\frac{π}{2}$)可得0<α+β<π,
∴α+β=$\frac{π}{4}$.
故選:A.
點評 本題考查三角函數(shù)值的求法,兩角和差的余弦公式,同角三角函數(shù)的基本關(guān)系,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,7) | B. | (7,7) | C. | (7,1) | D. | (3,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com