19.已知n!=1×2×3…×n(如1!,2!=1×2=2,3!=1×2×3=6,n∈N*),函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù)),gn(x)=1+x+$\frac{{x}^{2}}{2!}$+$\frac{{x}^{3}}{3!}$+…+$\frac{{x}_{n}}{n!}$
(I)證明:f(x)≥g1(x)
(II) 證明:1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)<e(n∈N*

分析 (Ⅰ)設(shè)ω1(x)=f(x)-g1(x)=ex-x-1,求出函數(shù)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出ω1(x)≥ω1(0)=0,從而證出結(jié)論即可;
(Ⅱ)問(wèn)題轉(zhuǎn)化為證明對(duì)任意正整數(shù)n,不等式n!≤${(\frac{n+1}{2})}^{n}$ ①成立,用數(shù)學(xué)歸納法證明不等式成立即可.

解答 證明:(Ⅰ)設(shè)ω1(x)=f(x)-g1(x)=ex-x-1,
所以${{ω}_{1}}^{′}$(x)=ex-1,
當(dāng)x<0時(shí),${{ω}_{1}}^{′}$(x)<0,當(dāng)x=0時(shí),${{ω}_{1}}^{′}$(x)=0,當(dāng)x>0時(shí),${{ω}_{1}}^{′}$(x)>0,
即函數(shù)ω1(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,在x=0處取得唯一極小值,
因?yàn)棣?SUB>1(0)=0,所以對(duì)任意實(shí)數(shù)x均有ω1(x)≥ω1(0)=0,
即f(x)-g1(x)≥0,所以f(x)≥g1(x);
(Ⅱ)即證對(duì)任意正整數(shù)n,
1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)=1+1+$\frac{1}{2!}$+$\frac{1}{3!}$+…+$\frac{1}{n!}$,
要證明上式,只需證明對(duì)任意正整數(shù)n,不等式${(\frac{2}{n+1})}^{n}$≤$\frac{1}{n!}$成立,
即要證明對(duì)任意正整數(shù)n,不等式n!≤${(\frac{n+1}{2})}^{n}$ ①成立,
用數(shù)學(xué)歸納法證明不等式 ①:
①當(dāng)n=1時(shí),1!≤${(\frac{1+1}{2})}^{1}$成立,所以不等式 ①成立.
②假設(shè)當(dāng)n=k(k∈N*)時(shí),不等式 ①成立,即k!≤${(\frac{k+1}{2})}^{k}$,
則(k+1)!=(k+1)k!≤(k+1)${(\frac{k+1}{2})}^{k}$=2${(\frac{k+1}{2})}^{k+1}$,
下證$\frac{{(\frac{k+2}{2})}^{k+1}}{{(\frac{k+1}{2})}^{k+1}}$=${(1+\frac{1}{k+1})}^{k+1}$≥2,先證 ${(1+x)}^{\frac{1}{x}}$≥2,0<x≤1,即證(1+x)≥2x(0<x≤1)②,
構(gòu)造函數(shù)h(x)=2x-(x+1),h′(x)=ln2•2x-1,令h′(x)=0,得${2}^{{x}_{0}}$=$\frac{lne}{ln2}$,0<x0<1,
所以h(x)在(0,x0)單減,在(x0,1)單增,且h(x)max=h(0)=h(1)=0,可得不等式 ②成立,
所以(k+1)!≤2${(\frac{k+1}{2})}^{k+1}$≤${(\frac{k+2}{2})}^{k+1}$,
這說(shuō)明當(dāng)n=k+1時(shí),不等式(*)也成立.由①、②知,對(duì)任意正整數(shù)n,不等式①都成立.
綜上可知,對(duì)任意正整數(shù)n,1+($\frac{2}{2}$)1+($\frac{2}{3}$)2+($\frac{2}{4}$)3+…+($\frac{2}{n+1}$)n≤gn(1)<e(n∈N*)成立.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,考查數(shù)學(xué)歸納法,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.原命題:“設(shè)復(fù)數(shù)z=a+bi(i為虛數(shù)單位),若z為純虛數(shù),則a=0”的逆命題、否命題、逆否命題中真命題共有1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)={log_a}\frac{x-2}{x+2}$(a>0且a≠1)
(1)求f(x)的定義域并判定f(x)的奇偶性;
(2)當(dāng)a>1時(shí),判定f(x)的單調(diào)性并用定義法證明;
(3)是否存在實(shí)數(shù)a,使得f(x)的定義域?yàn)閇m,n]時(shí),值域?yàn)閇1+logan,1+logam]?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,直三棱柱(側(cè)棱垂直于底面)ABC-A1B1C1中,CA=CB=$\frac{1}{2}$CC1,點(diǎn)D是棱AA1的中點(diǎn),且C1D⊥BD
(1)求證:CA⊥CB
(2)求直線CD與平面C1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知F1、F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),A是橢圓上一動(dòng)點(diǎn),滿足:
①∠F1AF2的最大值為60°
 ②若圓C與F1A的延長(zhǎng)線、F1F2的延長(zhǎng)線以及線段AF2相切,則M(2,0)為其中一個(gè)切點(diǎn),則橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.$\root{5}{-32}$=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)滿足f(x-1)=x2,則f(x)的解析式為(  )
A.f(x)=(x+1)2B.f(x)=(x-1)2C.f(x)=x2+1D.f(x)=x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知拋物線y2=4x的焦點(diǎn)F與橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1( a>b>0)的一個(gè)焦點(diǎn)重合,它們?cè)诘谝幌笙迌?nèi)的交點(diǎn)為P,且PF與x軸垂直,則橢圓的離心率為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.商丘一高某社團(tuán)為了了解“早餐與健康的關(guān)系”,選取某班共有60名學(xué)生,現(xiàn)采用系統(tǒng)抽樣的方法從中抽取6名學(xué)生做“早餐與健康”的調(diào)查,為此將學(xué)生編號(hào)為1,2,…,60.選取的這6名學(xué)生的編號(hào)可能是( 。
A.1,2,3,4,5,6B.6,16,26,36,46,56
C.1,2,4,8,16,32D.3,9,13,27,36,54

查看答案和解析>>

同步練習(xí)冊(cè)答案