【題目】如圖所示,是某海灣旅游區(qū)的一角,其中,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委會決定在直線海岸和上分別修建觀光長廊和AC,其中是寬長廊,造價是元/米,是窄長廊,造價是元/米,兩段長廊的總造價為120萬元,同時在線段上靠近點的三等分點處建一個觀光平臺,并建水上直線通道(平臺大小忽略不計),水上通道的造價是元/米.
(1) 若規(guī)劃在三角形區(qū)域內(nèi)開發(fā)水上游樂項目,要求的面積最大,那么和的長度分別為多少米?
(2) 在(1)的條件下,建直線通道還需要多少錢?
【答案】(1)和AC的長度分別為750米和1500米(2)萬元
【解析】
試題(1)設(shè)長為米,長為米,依題意得,即,表示面積,利用基本不等式可得結(jié)論;(2)利用向量方法,將表示為,根據(jù)向量的數(shù)量積與模長的關(guān)系可得結(jié)果.
試題解析:(1)設(shè)長為米,長為米,依題意得,
即,
=
當(dāng)且僅當(dāng),即時等號成立,
所以當(dāng)的面積最大時,和AC的長度分別為750米和1500米
(2)在(1)的條件下,因為.
由
得
,
元
所以,建水上通道還需要萬元.
解法二:在中,
在中,
在中,
=
元
所以,建水上通道還需要萬元.
解法三:以A為原點,以AB為軸建立平面直角坐標(biāo)系,則,
,即,設(shè)
由,求得, 所以
所以,
元
所以,建水上通道還需要萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】垃圾分一分,城市美十分;垃圾分類,人人有責(zé).某市為進(jìn)一步推進(jìn)生活垃圾分類工作,調(diào)動全民參與的積極性,舉辦了“垃圾分類游戲挑戰(zhàn)賽”.據(jù)統(tǒng)計,在為期個月的活動中,共有萬人次參與.為鼓勵市民積極參與活動,市文明辦隨機(jī)抽取名參與該活動的網(wǎng)友,以他們單次游戲得分作為樣本進(jìn)行分析,由此得到如下頻數(shù)分布表:
單次游戲得分 | ||||||
頻數(shù) |
(1)根據(jù)數(shù)據(jù),估計參與活動的網(wǎng)友單次游戲得分的平均值及標(biāo)準(zhǔn)差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);(其中標(biāo)準(zhǔn)差的計算結(jié)果要求精確到)
(2)若要從單次游戲得分在、、的三組參與者中,用分層抽樣的方法選取人進(jìn)行電話回訪,再從這人中任選人贈送話費,求此人單次游戲得分不在同一組內(nèi)的概率.
附:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為配合“2019雙十二”促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準(zhǔn)備某種商品各50個.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調(diào)整為40,45,54,61,但調(diào)整只能在相鄰派送點進(jìn)行,每次調(diào)動可以調(diào)整1件商品.為完成調(diào)整,則( )
A.最少需要16次調(diào)動,有2種可行方案
B.最少需要15次調(diào)動,有1種可行方案
C.最少需要16次調(diào)動,有1種可行方案
D.最少需要15次調(diào)動,有2種可行方案
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市對城市路網(wǎng)進(jìn)行改造,擬在原有a個標(biāo)段(注:一個標(biāo)段是指一定長度的機(jī)動車道)的基礎(chǔ)上,新建x個標(biāo)段和n個道路交叉口,其中n與x滿足n=ax+5.已知新建一個標(biāo)段的造價為m萬元,新建一個道路交叉口的造價是新建一個標(biāo)段的造價的k倍.
(1)寫出新建道路交叉口的總造價y(萬元)與x的函數(shù)關(guān)系式;
(2)設(shè)P是新建標(biāo)段的總造價與新建道路交叉口的總造價之比.若新建的標(biāo)段數(shù)是原有標(biāo)段數(shù)的20%,且k≥3.問:P能否大于,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形中,兩腰,底邊是的三等分點,是的中點.分別沿將四邊形和折起,使重合于點,得到如圖2所示的幾何體.在圖2中,分別為的中點.
(1)證明:平面
(2)求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績的情況,該州教育局組織高三理科生進(jìn)行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機(jī)抽取了100名理科生,,將他們的化學(xué)成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機(jī)抽取一名學(xué)生,該學(xué)生的化學(xué)成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取10名,再從這10名學(xué)生中隨機(jī)抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項均不為0的等差數(shù)列,公差為,為其前項和,且滿足.數(shù)列滿足,為數(shù)列的前項和.
(1)求;
(2)求;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:過點,左焦點
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過點F作于x軸不重合的直線l,l與橢圓交于A,B兩點,點A在直線上的投影N與點B的連線交x軸于D點,D點的橫坐標(biāo)是否為定值?若是,請求出定值;若不是,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=PAB=90°,BC=CD=AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com