【題目】如圖,直三棱柱中, 分別是, 的中點(diǎn),已知與平面所成的角為, .

1)證明: ∥平面

2)求二面角的正弦值.

【答案】(1)證明見解析;(2) .

【解析】試題分析:1連接,交于點(diǎn),的中點(diǎn),結(jié)合的中點(diǎn),根據(jù)三角形中位線定理可得,利用直線與平面平行的判定定理證明平面;(2根據(jù)勾股定理可得,為坐標(biāo)原點(diǎn), 、、軸、軸、軸建立如圖的空間坐標(biāo)系,利用向量垂直數(shù)量積為零,列方程組分別求出平面的法向量與平面的法向量利用空間向量夾角余弦公式可得結(jié)果.

試題解析:(1)證明:連接,交于點(diǎn)

的中點(diǎn)

的中點(diǎn),連接

,

因?yàn)?/span>平面 平面

所以∥平面

2解:易知

,得

為坐標(biāo)原點(diǎn), 、軸、軸、軸建立如圖的空間坐標(biāo)系

, , , , ,

設(shè)是平面的法向量,

,即,

可取

同理,設(shè)是平面的法向量,則,

可取

從而

即二面角的正弦值為.

【方法點(diǎn)晴】本題主要考查線面平行的判定定理以及利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x),f(0)=-2,且對(duì),yR,都有f(x+y)-f(y)=(x+2y+1)x.

1)求f(x)的表達(dá)式;

2)已知關(guān)于x的不等式f(x)-ax+a+1的解集為AA[2,3],求實(shí)數(shù)a的取值范圍;

3)已知數(shù)列{}中, , ,,且數(shù)列{的前n項(xiàng)和為

求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位N名員工參加社區(qū)低碳你我他活動(dòng),他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計(jì)的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間

人數(shù)

a

b

1)求正整數(shù)ab,N的值;

2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?

3)在(2)的條件下,從這6人中隨機(jī)抽取2人參加社區(qū)宣傳交流活動(dòng),求恰有1 人在第3組的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是( )

A. 至少有一個(gè)白球;至少有一個(gè)紅球 B. 至少有一個(gè)白球;紅、黑球各一個(gè)

C. 恰有一個(gè)白球;一個(gè)白球一個(gè)黑球 D. 至少有一個(gè)白球;都是白球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 是拋物線上兩點(diǎn),且兩點(diǎn)橫坐標(biāo)之和為3.

(1)求直線的斜率;

(2)若直線,直線與拋物線相切于點(diǎn),且,求方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱臺(tái)ABCD﹣A1B1C1D1中,底面ABCD是平行四邊形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,BAD=60°

證明:CC1∥平面A1BD

求直線CC1與平面ADD1A1所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).

1)求點(diǎn)的軌跡方程;

2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率不為0的直線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過定點(diǎn),并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車給市民出行帶來了諸多便利,某公司購(gòu)買了一批單車投放到某地給市民使用.據(jù)市場(chǎng)分析,每輛單車的營(yíng)運(yùn)累計(jì)收入 (單位:元)與營(yíng)運(yùn)天數(shù)滿足.

(1)要使?fàn)I運(yùn)累計(jì)收入高于800元,求營(yíng)運(yùn)天數(shù)的取值范圍;

(2)每輛單車營(yíng)運(yùn)多少天時(shí),才能使每天的平均營(yíng)運(yùn)收入最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將一副斜邊長(zhǎng)相等的直角三角板拼接成如圖所示的空間圖形,其中.若將它們的斜邊重合,讓三角形為軸轉(zhuǎn)動(dòng),則下列說法不正確的是( )

A. 當(dāng)平面平面時(shí),,兩點(diǎn)間的距離為

B. 當(dāng)平面平面時(shí),與平面所成的角為

C. 在三角形轉(zhuǎn)動(dòng)過程中,總有

D. 在三角形轉(zhuǎn)動(dòng)過程中,三棱錐的體積最大可達(dá)到

查看答案和解析>>

同步練習(xí)冊(cè)答案