【題目】24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將于2022年在北京-張家口舉行,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高變成如右所示的莖葉圖(單位: ):若身高在以上(包括)定義為高個(gè)子,身高在以下(不包括)定義為非高個(gè)子,且只有女高個(gè)子才能擔(dān)任禮儀小姐

1)如果分層抽樣的方法從高個(gè)子非高個(gè)子中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是高個(gè)子的概率是多少?

2)若從所有高個(gè)子中選3名志愿者,用表示所選志愿者中能擔(dān)任禮儀小姐的人數(shù),試寫(xiě)出的分布列,并求的數(shù)學(xué)期望.

【答案】12)見(jiàn)解析,1

【解析】

1)先根據(jù)分層抽樣確定5人中高個(gè)子非高個(gè)子人數(shù),再先求對(duì)立事件(都不是高個(gè)子)概率,最后根據(jù)對(duì)立事件概率公式求結(jié)果;

2)先確定隨機(jī)變量,再分別求對(duì)應(yīng)概率,寫(xiě)出分布列,最后根據(jù)數(shù)學(xué)期望公式得結(jié)果.

解:(1)根據(jù)莖葉圖,有高個(gè)子”12人,非高個(gè)子”18人用分層抽樣的方法,每個(gè)人被抽中的概率是,所以選中的高個(gè)子人,非高個(gè)子人.用事件表示至少有一名高個(gè)子被選中,則它的對(duì)立事件表示沒(méi)有一名高個(gè)子被選中,則,因此,至少有一人是高個(gè)子的概率是

(2)依題意,的取值為0,1,2,3

,

因此,的分布列如下:

0

1

2

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面CDEF⊥平面ABCD,且四邊形ABCD為平行四邊形,∠DAB45°,四邊形CDEF為直角梯形,EFDCEDCD,AB3EF3EDa,AD.

1)求證:ADBF

2)若線(xiàn)段CF上存在一點(diǎn)M,滿(mǎn)足AE∥平面BDM,求的值;

3)若a1,求二面角DBCF的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的極坐標(biāo)方程為

1)寫(xiě)出直線(xiàn)和曲線(xiàn)的直角坐標(biāo)方程;

2)過(guò)動(dòng)點(diǎn)且平行于的直線(xiàn)交曲線(xiàn)兩點(diǎn),若,求動(dòng)點(diǎn)到直線(xiàn)的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,過(guò)的直線(xiàn)相交于兩點(diǎn),點(diǎn)滿(mǎn)足.

1)當(dāng)的傾斜角為時(shí),求直線(xiàn)的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的方程為,定點(diǎn),點(diǎn)是曲線(xiàn)上的動(dòng)點(diǎn), 的中點(diǎn).

(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)已知直線(xiàn)軸的交點(diǎn)為,與曲線(xiàn)的交點(diǎn)為,若的中點(diǎn)為,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=2sinxxcosxx,f′x)為fx)的導(dǎo)數(shù).

1)證明:f′x)在區(qū)間(0π)存在唯一零點(diǎn);

2)若x[0π]時(shí),fxax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國(guó)面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對(duì)的一項(xiàng)課題.某市號(hào)召市民盡量減少開(kāi)車(chē)出行以綠色低碳的出行方式支持節(jié)能減排.原來(lái)天天開(kāi)車(chē)上班的王先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車(chē)和開(kāi)小車(chē)兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車(chē)方式上班,隨后每天用一次性?huà)仈S6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車(chē)上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個(gè)很重要公式——全概率公式.其特殊情況如下:如果事件相互對(duì)立并且,則對(duì)任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車(chē)出行方式的概率.

①用表示;

②王先生的這種選擇隨機(jī)選擇出行方式有沒(méi)有積極響應(yīng)該市政府的號(hào)召,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】向量集合,對(duì)于任意,以及任意,都有,則稱(chēng)為“類(lèi)集”,現(xiàn)有四個(gè)命題:

①若為“類(lèi)集”,則集合也是“類(lèi)集”;

②若,都是“類(lèi)集”,則集合也是“類(lèi)集”;

③若都是“類(lèi)集”,則也是“類(lèi)集”;

④若都是“類(lèi)集”,且交集非空,則也是“類(lèi)集”.

其中正確的命題有________(填所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案