【題目】齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬;田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬;田忌的下等馬劣于齊王的下等馬.現(xiàn)齊王與田忌各出上等馬、中等馬、下等馬一匹,共進(jìn)行三場比賽,規(guī)定:每一場雙方均任意選一匹馬參賽,且每匹馬僅參賽一次,勝兩場或兩場以上者獲勝.則田忌獲勝的概率為(

A.B.C.D.

【答案】B

【解析】

設(shè)齊王的上等馬、中等馬、下等馬分別為,,,田忌的上等馬、中等馬、下等馬分別為,,,利用列舉法求出田忌獲勝的概率.

設(shè)齊王的上等馬、中等馬、下等馬分別為,

設(shè)田忌的上等馬、中等馬、下等馬分別為,,,

每一場雙方均任意選一匹馬參賽,且每匹馬僅參賽一次,勝兩場或兩場以上者獲勝.

基本事件有:,,,,,,,,,,,,,,,,共6個,

田忌獲勝包含的基本事件有:,,,只有1個,

田忌獲勝的概率為

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)問:是否存在實數(shù),使得有兩個相異零點?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)對任意,,都有恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在經(jīng)濟學(xué)中,函數(shù)的邊際函數(shù)定義為.某醫(yī)療設(shè)備公司生產(chǎn)某醫(yī)療器材,已知每月生產(chǎn)的收益函數(shù)為 (單位:萬元),成本函數(shù)(單位:萬元),該公司每月最多生產(chǎn)臺該醫(yī)療器材.(利潤函數(shù)=收益函數(shù)-成本函數(shù))

1)求利潤函數(shù)及邊際利潤函數(shù);

2)此公司每月生產(chǎn)多少臺該醫(yī)療器材時每臺的平均利潤最大,最大值為多少?(精確到

3)求為何值時利潤函數(shù)取得最大值,并解釋邊際利潤函數(shù)的實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是直角斜邊上一動點,將直角沿著翻折,使構(gòu)成直二面角,則翻折后的最小值是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+(y-1)2=5,直線lmxy+1-m=0(mR).

(1)判斷直線l與圓C的位置關(guān)系;

(2)設(shè)直線l與圓C交于A,B兩點,若直線l的傾斜角為120°,求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,動圓與圓外切,且與直線相切,該動圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點的直線與拋物線相交于兩點,拋物線在點A的切線與交于點N,求面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案