【題目】某水果批發(fā)商經(jīng)銷某種水果(以下簡稱水果),購入價為300/袋,并以360/袋的價格售出,若前8小時內(nèi)所購進的水果沒有售完,則批發(fā)商將沒售完的水果以220/袋的價格低價處理完畢(根據(jù)經(jīng)驗,2小時內(nèi)完全能夠把水果低價處理完,且當(dāng)天不再購入).該水果批發(fā)商根據(jù)往年的銷量,統(tǒng)計了100水果在每天的前8小時內(nèi)的銷售量,制成如下頻數(shù)分布條形圖.

表示水果一天前8小時內(nèi)的銷售量,表示水果批發(fā)商一天經(jīng)營水果的利潤,表示水果批發(fā)商一天批發(fā)水果的袋數(shù).

1)若,求的函數(shù)解析式;

2)假設(shè)這100天中水果批發(fā)商每天購入水果15袋或者16袋,分別計算該水果批發(fā)商這100天經(jīng)營水果的利潤的平均數(shù),以此作為決策依據(jù),每天應(yīng)購入水果15袋還是16袋?

【答案】1;(215

【解析】

1)根據(jù),分,由利潤函數(shù)求解.

2)若水果批發(fā)商每天購入水果15袋,根據(jù)統(tǒng)計圖,則這100天中有80天的利潤為900元,有20天的利潤為760元,求得平均數(shù),若水果批發(fā)商每天購入水果16袋,則這100天中有50天的利潤為960元,有30天的利潤為820元,有20天的利潤為680元,再求得其平均數(shù),兩者比較下結(jié)論.

1)當(dāng)時,,

當(dāng)時,,

綜上,.

2)若水果批發(fā)商每天購入水果15袋,則這100天中有80天的利潤為900元,有20天的利潤為760元,

因此該水果批發(fā)商這100天經(jīng)營水果的利潤的平均數(shù)為.

若水果批發(fā)商每天購入水果16袋,則這100天中有50天的利潤為960元,有30天的利潤為820元,有20天的利潤為680元,

因此該水果批發(fā)商這100天經(jīng)營水果的利潤的平均數(shù)為.

比較兩個平均數(shù)可知,每天應(yīng)購入水果15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】實現(xiàn)國家富強.民族復(fù)興.人民幸福是“中國夢”的本質(zhì)內(nèi)涵.某商家計劃以“全民健身促健康,同心共筑中國夢”為主題舉辦一次有獎消費活動,此商家先把某品牌乒乓球重新包裝,包裝時在每個乒乓球上印上“中”“國”“夢”三個字樣中的一個,之后隨機裝盒(14個球),并規(guī)定:若顧客購買的一盒球印的是同一個字,則此顧客獲得一等獎;若顧客購買的一盒球集齊了“中”“國”二字且僅有此二字,則此顧客獲得二等獎;若顧客購買的一盒球集齊了“中”“國”“夢”三個字,則此顧客獲得三等獎,其它情況不設(shè)獎,則顧客購買一盒乒乓球獲獎的概率是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}為正項等比數(shù)列,a11,數(shù)列{bn}滿足b23,a1b1+a2b2+a3b3+…+anbn3+2n32n

1)求an;

2)求的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程7個不同的實數(shù)解,的取值范圍(

A.(2,6)B.(6,9)C.(2,12)D.(4,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點,點是拋物線上一點,且,直線過定點(4,0),與拋物線交于兩點,點在直線上的射影是.

1)求的值;

2)若,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,極點為,一條封閉的曲線由四段曲線組成:,,,.

1)求該封閉曲線所圍成的圖形面積;

2)若直線與曲線恰有3個公共點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,左右頂點分別為,,右焦點為為橢圓上異于,的動點,且面積的最大值為.

1)求橢圓的方程;

2)設(shè)直線軸交于點,過點的平行線交軸與點,試探究是否存在定點,使得以為直徑的圓恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且四個頂點構(gòu)成的四邊形的面積是

1)求橢圓的方程;

2)已知直線經(jīng)過點,且不垂直于軸,直線與橢圓交于,兩點,的中點,直線與橢圓交于,兩點(是坐標(biāo)原點),求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某總公司在AB兩地分別有甲、乙兩個下屬公司同時生產(chǎn)某種新能源產(chǎn)品(這兩個公司每天都固定生產(chǎn)50件產(chǎn)品),所生產(chǎn)的產(chǎn)品均在本地銷售.產(chǎn)品進入市場之前需要對產(chǎn)品進行性能檢測,得分低于80分的定為次品,需要返廠再加工;得分不低于80分的定為正品,可以進入市場.檢測員統(tǒng)計了甲、乙兩個下屬公司100天的生產(chǎn)情況及每件產(chǎn)品盈利虧損情況,數(shù)據(jù)如下表所示:

1

甲公司

得分

件數(shù)

10

10

40

40

50

天數(shù)

10

10

10

10

80

2

乙公司

得分

件數(shù)

10

5

40

45

50

天數(shù)

20

10

20

10

70

3

每件正品

每件次品

甲公司

2萬元

3萬元

乙公司

3萬元

3.5萬元

1)分別求甲、乙兩個公司這100天生產(chǎn)的產(chǎn)品的正品率(用百分?jǐn)?shù)表示);

2)試問甲乙兩個公司這100天生產(chǎn)的產(chǎn)品的總利潤哪個更大?說明理由.

查看答案和解析>>

同步練習(xí)冊答案