【題目】已知函數(shù), .
(1)若曲線的一條切線經(jīng)過點,求這條切線的方程.
(2)若關于的方程有兩個不相等的實數(shù)根x1,x2。
①求實數(shù)a的取值范圍;
②證明: .
【答案】(1)或.(2)①②見解析
【解析】試題分析:(1)先設切線點斜式方程,再與二次函數(shù)聯(lián)立方程組,利用判別式為零得斜率(2)①先求函數(shù)導數(shù),分類討論導函數(shù)零點,單調函數(shù)至多一個零點,所以函數(shù)不單調,再依次討論對應單調區(qū)間上有零點滿足的條件②構造函數(shù), ,利用導數(shù)易得函數(shù)單調遞增,即得結論
試題解析:解:(1)解法一 設經(jīng)過點的切線與曲線相切于點,
由得,
所以該切線方程為,
因為該切線經(jīng)過,
所以,解得,
所以切線方程為或.
解法二 由題意得曲線的切線的斜率一定存在,
設所求的切線方程為,
由 ,得,
因為切線與拋物線相切,
所以,解得,
所以所求的切線方程為或.
(2)①由,得.
設,
則,
由題意得函數(shù)恰好有兩個零點.
(i)當,則,
只有一個零點1.
(ii)當時,由得,由得,
即在上為減函數(shù),在上為增函數(shù),
而,
所以在上有唯一零點,且該零點在上.
取且,
則
所以在上有唯一零點,且該零點在上,
所以恰好有兩個零點.
(iii)當時,由得,
若, ,
所以在上至多有一個零點.
若,則,
當時, ,即在上單調遞減.
又,所以在上至多有一個零點.
當時, 在上單調遞增,在上為減函數(shù),
又,
所以h(x)在上無零點.
若,則,
又當時, ,
所以不存在零點.
在上無零點
故當時, ;當時, .
因此在上單調遞增,在上單調遞減.
又。
所以在無零點,在至多有一個零點.
綜上, 的取值范圍為.
②不妨設,
由①知, ,且, 在單調遞減,
所以等價于,即.
由于,
且,
所以.
設,
則,
當時, ,所以.
而,故當時, .
從而,故.
科目:高中數(shù)學 來源: 題型:
【題目】2016年“雙節(jié)”期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速分成六段: , , , , , 后得到如圖的頻率分布直方圖.
(I)某調查公司在采樣中,用到的是什么抽樣方法?
(II)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;
(III)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線和在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】質監(jiān)部門從某超市銷售的甲、乙兩種食用油中分別各隨機抽取100桶檢測某項質量指標,由檢測結果得到如下的頻率分布直方圖:
(Ⅰ)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質量指標的方差分別為,,試比較,的大小(只要求寫出答案);
(Ⅱ)估計在甲、乙兩種食用油中隨機抽取1捅,恰有一桶的質量指標大于20;
(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質量指標值服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本方差,設表示從乙種食用油中隨機抽取10桶,其質量指標值位于(14.55,38.45)的桶數(shù),求的數(shù)學期望.
注:①同一組數(shù)據(jù)用該區(qū)問的中點值作代表,計算得
②若,則,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(Ⅰ)求所取3張卡片上的數(shù)字完全相同的概率;
(Ⅱ)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學期望.
(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年7月24日,長春長生生物科技有限責任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,因此,疫苗在上市前必須經(jīng)過嚴格的檢測,以保證疫苗使用的安全和有效.某生物制品研究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如表:現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.
未感染病毒 | 感染病毒 | 總計 | |
未注射疫苗 | 20 | x | A |
注射疫苗 | 30 | y | B |
總計 | 50 | 50 | 100 |
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有99.9%把握認為注射此種疫苗有效?
附:,n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中, , , , 是中點(如圖1).將沿折起到圖2中的位置,得到四棱錐.
(1)將沿折起的過程中, 平面是否成立?并證明你的結論;
(2)若,過的平面交于點,且為的中點,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根據(jù)散點圖判斷: 與哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)
(2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立關于的回歸方程(回歸系數(shù)的結果精確到0.01);
(3)若每冊書定價為10元,則至少應該印刷多少冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結果精確到1)
(附:對于一組數(shù)據(jù), ,…, ,其回歸直線的斜率和截距的最小二乘估計分別為, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于正整數(shù)集合(,),如果去掉其中任意一個元素()之后,剩余的所有元素組成的集合都能分為兩個交集為空集的集合,且這兩個集合的所有元素之和相等,就稱集合為“和諧集”.
(1)判斷集合是否為“和諧集”,并說明理由;
(2)求證:集合是“和諧集”;
(3)求證:若集合是“和諧集”,則集合中元素個數(shù)為奇數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com