【題目】2018年7月24日,長春長生生物科技有限責(zé)任公司先被查出狂犬病疫苗生產(chǎn)記錄造假,因此,疫苗在上市前必須經(jīng)過嚴格的檢測,以保證疫苗使用的安全和有效.某生物制品研究所將某一型號疫苗用在動物小白鼠身上進行科研和臨床實驗,得到統(tǒng)計數(shù)據(jù)如表:現(xiàn)從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為

未感染病毒

感染病毒

總計

未注射疫苗

20

x

A

注射疫苗

30

y

B

總計

50

50

100

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

(1)求2×2列聯(lián)表中的數(shù)據(jù)的值;

(2)能否有99.9%把握認為注射此種疫苗有效?

附:,nabcd.

【答案】(1),,;(2)見解析

【解析】

(1)由從所有試驗小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為,根據(jù)古典概型概率公式可求出,從而可求出的值;(2)將列聯(lián)表中的數(shù)據(jù)代入公式,求出的觀測值,與表中臨界值比較即可得出結(jié)論。

(1)設(shè)從所有試驗小白鼠中任取一只,取到注射疫苗小白鼠為事件A,

由已知得,所以,,,

(2)根據(jù)列聯(lián)表中數(shù)據(jù)由公式計算得:

的觀測值

所以至少有99.9%的把握認為疫苗有效.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中,a,b為常數(shù),n∈N,f(0)A.已知栽種3年后該樹木的高度為栽種時高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時高度的8倍;

2)該樹木在栽種后哪一年的增長高度最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點在曲線段上,點在線段上).已知,其中曲線段是以為頂點, 為對稱軸的拋物線的一部分.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担謩e求出曲線段與線段的方程;

(2)求該廠家廣告區(qū)域的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若存在使得成立,求實數(shù)的取值范圍;

(Ⅱ)求證:當時,在(1)的條件下, 成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)若曲線的一條切線經(jīng)過點,求這條切線的方程.

(2)若關(guān)于的方程有兩個不相等的實數(shù)根x1,x2

求實數(shù)a的取值范圍;

證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),則下列結(jié)論正確的是(  )

A. 導(dǎo)函數(shù)為

B. 函數(shù)f(x)的圖象關(guān)于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個單位長度得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到其焦點的距離為5,雙曲線的左頂點為,若雙曲線的一條漸近線與直線平行,則實數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左右焦點分別為, 上的動點到兩焦點的距離之和為4,當點運動到橢圓的上頂點時,直線恰與以原點為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點分別為,若交直線兩點.問以為直徑的圓是否過定點?若過定點,請求出該定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計劃在某水庫建一座至多安裝4臺發(fā)電機的水電站,過去0年的水文資料顯示,水庫年入流量年入流量:一年內(nèi)上游來水與庫區(qū)降水之和,單位:億立方米都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,將年入流量在以上四段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨立.

(1)求在未來3年中,至多1年的年入流量不低于120的概率;

(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量的限制,并有如下關(guān)系:

若某臺發(fā)電機運行,則該臺發(fā)電機年利潤為500萬元;若某臺發(fā)電機未運行,則該臺發(fā)電機年虧損1500萬元,水電站計劃在該水庫安裝2臺或3臺發(fā)電機,你認為應(yīng)安裝2臺還是3臺發(fā)電機?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案