【題目】如圖,正四棱錐的底邊長為2,側(cè)棱長為,為上一點,且,點,分別為,上的點,且.
(1)證明:平面平面;
(2)求銳二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
(1)由正方形的性質(zhì)知,又由相似三角形可得,
再結(jié)合面面平行的判定定理即可證明;
(2)由已知條件可推導(dǎo)出,,兩兩垂直,建立空間直角坐標系,
求出平面的法向量,利用公式即可求銳二面角的余弦值.
(1),且,
四邊形為平行四邊形,
,又平面,
平面,
,,,
,,又平面,
平面,
,平面,,
平面平面;
(2)如圖,連接,相交于點,連接,
四棱錐為正四棱錐,
,,
又,∴,且,
同理可得,∴,,兩兩垂直,
故建立如圖所示的空間直角坐標系,
則,,,,
,,,,
,,,
令平面的法向量為,
則即
解得
取,則,,
故,
同理可得平面的一個法向量,
∴,
銳二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為米,高為米,體積為立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為元(為圓周率).該蓄水池的體積最大時______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,E,F分別為AB的三等分點,,,,若沿著FG,ED折疊使得點A,B重合,如圖2所示,連結(jié)GC,BD
(1)求證:平面平面BCDE;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,判斷函數(shù),()有幾個零點,并證明你的結(jié)論;
(3)設(shè)函數(shù),若函數(shù)在為增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在綜合素質(zhì)評價的某個維度的測評中,依據(jù)評分細則,學(xué)生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學(xué)生的在該維度的測評結(jié)果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學(xué)生,得到如下的列聯(lián)表:
優(yōu)秀 | 合格 | 總計 | |
男生 | 6 | ||
女生 | 18 | ||
合計 | 60 |
已知在該班隨機抽取1人測評結(jié)果為優(yōu)秀的概率為.
(1)完成上面的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系?
(3)現(xiàn)在如果想了解全校學(xué)生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學(xué)生中抽取少數(shù)一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.
附:
0.25 | 0.10 | 0.025 | |
1.323 | 2.706 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“二進制”來源于我國古代的《易經(jīng)》,該書中有兩類最基本的符號:“—”和“——”,其中“—”在二進制中記作“1”,“——”在二進制中記作“0”,例如二進制數(shù)化為十進制的計算如下:.若從兩類符號中任取2個符號進行排列,則得到的二進制數(shù)所對應(yīng)的十進制數(shù)大于2的概率為( )
A.0B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省從2021年開始將全面推行新高考制度,新高考“”中的“2”要求考生從政治、化學(xué)、生物、地理四門中選兩科,按照等級賦分計入高考成績,等級賦分規(guī)則如下:從2021年夏季高考開始,高考政治、化學(xué)、生物、地理四門等級考試科目的考生原始成績從高到低劃分為五個等級,確定各等級人數(shù)所占比例分別為,,,,,等級考試科目成績計入考生總成績時,將至等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法分別轉(zhuǎn)換到、、、、五個分數(shù)區(qū)間,得到考生的等級分,等級轉(zhuǎn)換分滿分為100分.具體轉(zhuǎn)換分數(shù)區(qū)間如下表:
等級 | |||||
比例 | |||||
賦分區(qū)間 |
而等比例轉(zhuǎn)換法是通過公式計算:
其中,分別表示原始分區(qū)間的最低分和最高分,、分別表示等級分區(qū)間的最低分和最高分,表示原始分,表示轉(zhuǎn)換分,當(dāng)原始分為,時,等級分分別為、
假設(shè)小南的化學(xué)考試成績信息如下表:
考生科目 | 考試成績 | 成績等級 | 原始分區(qū)間 | 等級分區(qū)間 |
化學(xué) | 75分 | 等級 |
設(shè)小南轉(zhuǎn)換后的等級成績?yōu)?/span>,根據(jù)公式得:,
所以(四舍五入取整),小南最終化學(xué)成績?yōu)?7分.
已知某年級學(xué)生有100人選了化學(xué),以半期考試成績?yōu)樵汲煽冝D(zhuǎn)換本年級的化學(xué)等級成績,其中化學(xué)成績獲得等級的學(xué)生原始成績統(tǒng)計如下表:
成績 | 95 | 93 | 91 | 90 | 88 | 87 | 85 |
人數(shù) | 1 | 2 | 3 | 2 | 3 | 2 | 2 |
(1)從化學(xué)成績獲得等級的學(xué)生中任取2名,求恰好有1名同學(xué)的等級成績不小于96分的概率;
(2)從化學(xué)成績獲得等級的學(xué)生中任取5名,設(shè)5名學(xué)生中等級成績不小于96分人數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一年之計在于春,一日之計在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個坑進行播種,每個坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨立.對每一個坑而言,如果至少有兩粒種子發(fā)芽,則不需要進行補播種,否則要補播種.
(1)當(dāng)取何值時,有3個坑要補播種的概率最大?最大概率為多少?
(2)當(dāng)時,用表示要補播種的坑的個數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com