【題目】在綜合素質(zhì)評價的某個維度的測評中,依據(jù)評分細則,學生之間相互打分,最終將所有的數(shù)據(jù)合成一個分數(shù),滿分100分,按照大于或等于80分的為優(yōu)秀,小于80分的為合格,為了解學生的在該維度的測評結(jié)果,在畢業(yè)班中隨機抽出一個班的數(shù)據(jù).該班共有60名學生,得到如下的列聯(lián)表:

優(yōu)秀

合格

總計

男生

6

女生

18

合計

60

已知在該班隨機抽取1人測評結(jié)果為優(yōu)秀的概率為.

1)完成上面的列聯(lián)表;

2)能否在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系?

3)現(xiàn)在如果想了解全校學生在該維度的表現(xiàn)情況,采取簡單隨機抽樣方式在全校學生中抽取少數(shù)一部分來分析,請你選擇一個合適的抽樣方法,并解釋理由.

附:

0.25

0.10

0.025

1.323

2.706

5.024

【答案】(1)見解析;(2)在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系3)見解析.

【解析】

1)由已知抽取的人中優(yōu)秀人數(shù)為20,這樣結(jié)合已知可得列聯(lián)表;

2)根據(jù)列聯(lián)表計算,比較后可得;

3)由于性別對結(jié)果有影響,因此用分層抽樣法.

解:(1

優(yōu)秀

合格

總計

男生

6

22

28

女生

14

18

32

合計

20

40

60

2)由于,

因此在犯錯誤的概率不超過0.10的前提下認為性別與測評結(jié)果有關(guān)系”.

3)由(2)可知性別有可能對是否優(yōu)秀有影響,所以采用分層抽樣按男女生比例抽取一定的學生,這樣得到的結(jié)果對學生在該維度的總體表現(xiàn)情況會比較符合實際情況.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐PABCD中,△PAB是邊長為2的等邊三角形,底面ABCD為直角梯形,ABCD,ABBC,BCCD1,PD.

1)證明:ABPD.

2)求二面角APBC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且,當k最大時,點P恰好在以HF為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,,,,是棱的中點.

1)求證:平面;

2)若,點是線段上一點,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

平面直角坐標系xOy中,曲線C.直線l經(jīng)過點Pm0),且傾斜角為O為極點,以x軸正半軸為極軸,建立極坐標系.

)寫出曲線C的極坐標方程與直線l的參數(shù)方程;

)若直線l與曲線C相交于A,B兩點,且|PA·PB|=1,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正四棱錐的底邊長為2,側(cè)棱長為,上一點,且,點,分別為,上的點,且.

1)證明:平面平面;

2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求直線的普通方程和曲線的直角坐標方程;

2)若射線)與直線和曲線分別交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2 +y2 =1,曲線C2的參數(shù)方程為θ為參數(shù)).

(Ⅰ)求曲線C1C2的極坐標方程:

(Ⅱ)設射線θ=(ρ>0)分別與曲線C1C2相交于A,B兩點,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,平面,,四邊形為菱形,,點,分別在棱.

1)若平面,設,求的值;

2)若,,直線與平面所成角的正切值為,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案