【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為中心,以坐標(biāo)軸為對(duì)稱軸的幫圓C經(jīng)過點(diǎn)M(2,1),N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點(diǎn)M作傾斜角互補(bǔ)的兩條直線,分別與橢圓C相交于異于M點(diǎn)的A,B兩點(diǎn),當(dāng)△AMB面積取得最大值時(shí),求直線AB的方程.
【答案】(1)
(2)或
【解析】
(1)設(shè)橢圓C的方程為(,,).
根據(jù)橢圓過兩點(diǎn),代入得到方程組,解得.
(2)由直線AM,BM,AB的斜率存在,故.設(shè)它們的斜率分別為,,k.
設(shè),,直線AB的方程為.聯(lián)立直線與橢圓方程,消元列出韋達(dá)定理,由.即. 即可解得,或.分別代入檢驗(yàn),再用弦長(zhǎng)公式及點(diǎn)到直線的距離公式,表示出三角形的面積,利用基本不等式求最值.
解:(1)設(shè)橢圓C的方程為(,,).
∵點(diǎn)和N在橢圓C上,
∴.解得.
∴橢圓C的標(biāo)準(zhǔn)方程為.
(2)∵點(diǎn)A,B為橢圓上異于M的兩點(diǎn),且直線AM,BM的傾斜角互補(bǔ),
設(shè),,直線AB的方程為.
∴.
∴.
由,消去y,得.
由,得.
∴,.
∴.
∴.
∴.
∴,或.
∵點(diǎn)A,B為橢圓上異于M的兩點(diǎn),
∴當(dāng)時(shí),直線AB的方程為,不合題意,舍去.
∴直線AB的斜率為.
∵,點(diǎn)M到直線AB的距離為,
∴的面積為.
當(dāng)且僅當(dāng)時(shí),的面積取得最大值,此時(shí).
∵,滿足.
∴直線AB的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某工廠甲、乙兩個(gè)車間包裝同一種產(chǎn)品,在自動(dòng)包裝傳送帶上,每隔30分鐘抽一包產(chǎn)品,稱其重量是否合格,分別記錄抽查數(shù)據(jù)如下(單位:千克):
甲車間:102,101,99,98,103,98,99.
乙車間:110,115,90,85,75,115,110.
(1)這種抽樣方式是何種抽樣方法;
(2)試根據(jù)這組數(shù)據(jù)說明哪個(gè)車間產(chǎn)品較穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)文化的優(yōu)秀遺產(chǎn),數(shù)學(xué)家劉徽在注解《九章算術(shù)》時(shí),發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊行的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,為此他創(chuàng)立了割圓術(shù),利用割圓術(shù),劉徽得到了圓周率精確到小數(shù)點(diǎn)后四位3.1416,后人稱3.14為徽率,如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,若結(jié)束程序時(shí),則輸出的為( )(,,)
A. 6 B. 12 C. 24 D. 48
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在[e,+∞)上的函數(shù)f(x)滿足f(x)+xlnxf′(x)<0且f(2018)=0,其中f′(x)是函數(shù)的導(dǎo)函數(shù),e是自然對(duì)數(shù)的底數(shù),則不等式f(x)>0的解集為( )
A. [e,2018) B. [2018,+∞) C. (e,+∞) D. [e,e+1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域?yàn)?/span>R的偶函數(shù)f(x)滿足對(duì)x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣2x2+12x﹣18,若函數(shù)y=f(x)﹣loga(|x|+1)至少有6個(gè)零點(diǎn),則a的取值范圍是( )
A.(0,)B.(0,)C.(0,)D.(0,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角△ABC中,AB=AC,∠ACB的平分線與AB交于點(diǎn)D,過△ABC的外心O作CD的垂線與AC交于點(diǎn)E,過E作AB的平行線與CD交于點(diǎn)F。證明:
(1)C、E、0、F四點(diǎn)共圓;
(2)A、0、F三點(diǎn)共線;
(3)EA=EF。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個(gè)對(duì)稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號(hào)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com