【題目】已知直線l1:4x-3y+6=0和直線l2:x=-.若拋物線C:y2=2px(p>0)上的點到直線l1和直線l2的距離之和的最小值為2.
(1)求拋物線C的方程;
(2)若以拋物線上任意一點M為切點的直線l與直線l2交于點N,試問在x軸上是否存在定點Q,使Q點在以MN為直徑的圓上,若存在,求出點Q的坐標,若不存在,請說明理由.
【答案】(1)y2=4x(2)存在定點Q(1,0),使Q在以MN為直徑的圓上.
【解析】
試題解: (Ⅰ)由定義知為拋物線的準線,拋物線焦點坐標
由拋物線定義知拋物線上點到直線的距離等于其到焦點F的距離.
所以拋物線上的點到直線和直線的距離之和的最小值為焦點F到直線的距離.…………2分
所以,則=2,所以,拋物線方程為.………………4分
(Ⅱ)設(shè)M,由題意知直線斜率存在,設(shè)為k,且,所以直線方程為,
代入消x得:
由………………6分
所以直線方程為,令x=-1,又由得
設(shè)則
由題意知……………8分
,把代入左式,
得:,……………10分
因為對任意的等式恒成立,
所以
所以即在x軸上存在定點Q(1,0)在以MN為直徑的圓上.……………12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)為定義在上的偶函數(shù),且當時,.
(1)求當時,的解析式;
(2)在網(wǎng)格中繪制的圖像;
(3)若方程有四個根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列的通項公式是(表示不超過實數(shù)的最大整數(shù)).
(1)證明:、、、、都是數(shù)列的項;
(2)是否是數(shù)列的項,證明你的結(jié)論;
(3)證明:有無窮多個2的正整數(shù)冪是數(shù)列的項.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率,且經(jīng)過點,,,,為橢圓的四個頂點(如圖),直線過右頂點且垂直于軸.
(1)求該橢圓的標準方程;
(2)為上一點(軸上方),直線,分別交橢圓于,兩點,若,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若對任意的實數(shù),都有成立,求實數(shù)的取值范圍;
(Ⅲ)若,的最大值是,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓長軸是短軸的倍,且右焦點為.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)直線交橢圓于兩點,若線段中點的橫坐標為,求直線的方程及的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com