【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)判斷方程在內的解的個數(shù),并加以證明.
【答案】(1);(2)方程在上有3個解;證明見解析。
【解析】
(1)根據(jù)直線的切線方程,可得斜率即過的定點坐標,對函數(shù)求導,代入橫坐標即可求得參數(shù)a;將橫坐標帶入原函數(shù)即可求得b,即得解析式。
(2)令,對求導,并可知,,根據(jù)零點存在定理及單調性可知在上只有一個零點。同理,討論在各區(qū)間的端點符號及單調性即可判斷零點情況。
(1)直線的斜率為,過點
,則,即
所以
(2)方程在上有3個解。
證明:令,
則
又,,
所以在上至少有一個零點
又在上單調遞減,故在上只有一個零點,
當時,,故,
所以函數(shù)在上無零點.
當時,令,,
所以在上單調遞增,,
所以,使得在上單調遞增,在上單調遞減.
又,,所以函數(shù)在上有2個零點.
綜上,方程在上有3個解.
科目:高中數(shù)學 來源: 題型:
【題目】一個圓周上有9個點,以這9個點為頂點作3個三角形.當這3個三角形無公共頂點且邊互不相交時,我們把它稱為一種構圖.滿足這樣條件的構圖共有( )種.
A. 3 B. 6 C. 9 D. 12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】王府井百貨分店今年春節(jié)期間,消費達到一定標準的顧客可進行一次抽獎活動,隨著抽獎活動的有效開展,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對春節(jié)前7天參加抽獎活動的人數(shù)進行統(tǒng)計, 表示第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
經(jīng)過進一步統(tǒng)計分析,發(fā)現(xiàn)與具有線性相關關系.
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)判斷變量與之間是正相關還是負相關;
(3)若該活動只持續(xù)10天,估計共有多少名顧客參加抽獎.
參與公式: , , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩個人獨立地破譯一個密碼,他們能譯出密碼的概率分別為和.
(1)求2個人都譯出密碼的概率;
(2)求2個人都譯不出密碼的概率;
(3)求至多1個人都譯出密碼的概率;
(4)求至少1個人都譯出密碼的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是中國古代的數(shù)學專著,其中的“更相減損術”可以用來求兩個數(shù)的最大公約數(shù),原文是:可半者半之,不可半者,副置分母、子之數(shù),以少減多,更相減損,求其等也,以等數(shù)約之. 翻譯為現(xiàn)代的語言如下:如果需要對分數(shù)進行約分,那么可以折半的話,就折半(也就是用2來約分).如果不可以折半的話,那么就比較分母和分子的大小,用大數(shù)減去小數(shù),互相減來減去,一直到減數(shù)與差相等為止,用這個相等的數(shù)字來約分,現(xiàn)給出“更相減損術”的程序框圖如圖所示,如果輸入的,,則輸出的( )
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的內角A,B,C所對邊分別為a、b、c,且2acosC=2b-c.
(1)求角A的大。
(2)若AB=3,AC邊上的中線SD的長為,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將下列問題的解答過程補充完整.
依次計算數(shù)列,,,,…的前四項的值,由此猜測的有限項的表達式,并用數(shù)學歸納法加以證明.
解:計算 ,
,
① ,
② ,
由此猜想 ③ .(*)
下面用數(shù)學歸納法證明這一猜想.
(i)當時,左邊,右邊,所以等式成立.
(ⅱ)假設當時,等式成立,即
④ .
那么,當時,
⑤
⑥
⑦ .
等式也成立.
根據(jù)(i)和(ⅱ)可以斷定,(*)式對任何都成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com