【題目】甲、乙兩個人獨立地破譯一個密碼,他們能譯出密碼的概率分別為和.
(1)求2個人都譯出密碼的概率;
(2)求2個人都譯不出密碼的概率;
(3)求至多1個人都譯出密碼的概率;
(4)求至少1個人都譯出密碼的概率.
【答案】(1)(2)(3)(4)
【解析】
(1)利用獨立事件同時發(fā)生的概率乘法公式可求;
(2)先求解兩人不能譯出密碼的概率,結(jié)合獨立事件概率乘法公式可求;
(3)利用對立事件進行求解,“至多1個人譯出密碼”的對立事件為“2個人都譯出密碼”;
(4)利用對立事件進行求解,“至少1個人譯出密碼”的對立事件為“2個人都未譯出密碼”.
(1)記“甲獨立地譯出密碼”事件,“乙獨立地譯出密碼”為事件,且,為相互獨立事件,且,.
2個人都譯出密碼的概率為
.
(2)2個人都譯不出密碼的概率為
.
(3)“至多1個人譯出密碼”的對立事件“2個人都譯出密碼”,所以至多1個人譯出密碼的概率為
.
(4)“至少1個人譯出密碼”的對立事件“2個人都未譯出密碼”,所以至少1個人譯出密碼的概率為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將四棱錐S-ABCD的每一個頂點染上一種顏色,并使同一條棱上的兩端異色,如果只有5種色可供使用,則不同的染色方法種數(shù)為( )
A.240B.360C.420D.960
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點在大眾中的熟知度,隨機對15~65歲的人群抽樣了人,回答問題“某省有哪幾個著名的旅游景點?”統(tǒng)計結(jié)果如下圖表
組號 | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】手機支付也稱為移動支付,是指允許移動用戶使用其移動終端(通常是手機)對所消費的商品或服務(wù)進行賬務(wù)支付的一種服務(wù)方式.繼卡類支付、網(wǎng)絡(luò)支付后,手機支付儼然成為新寵.某金融機構(gòu)為了了解移動支付在大眾中的熟知度,對15-65歲的人群隨機抽樣調(diào)查,調(diào)查的問題是“你會使用移動支付嗎?”其中,回答“會”的共有100個人,把這100個人按照年齡分成5組,然后繪制成如圖所示的頻率分布表和頻率分布直方圖.
組數(shù) | 第l組 | 第2組 | 第3組 | 第4組 | 第5組 |
分組 | |||||
頻數(shù) | 20 | 36 | 30 | 10 | 4 |
(1)求;
(2)從第l,3,4組中用分層抽樣的方法抽取6人,求第l,3,4組抽取的人數(shù):
(3)在(2)抽取的6人中再隨機抽取2人,求所抽取的2人來自同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,若橢圓經(jīng)過點,且的面積為.
(1)求橢圓的標準方程;
(2)設(shè)斜率為的直線與以原點為圓心,半徑為的圓交于,兩點,與橢圓交于,兩點,且,當(dāng)取得最小值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中,為常數(shù)且在處取得極值.
1當(dāng)時,求的單調(diào)區(qū)間;
2若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線方程為.
(1)求的解析式;
(2)判斷方程在內(nèi)的解的個數(shù),并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校共有教職工900人,分成三個批次進行繼續(xù)教育培訓(xùn),在三個批次中男、女教職工人數(shù)如下表所示. 已知在全體教職工中隨機抽取1名,抽到第二批次中女教職工的概率是0.16 .
(1)求的值;
(2)現(xiàn)用分層抽樣的方法在全體教職工中抽取54名做培訓(xùn)效果的調(diào)查, 問應(yīng)在第三批次中抽取教職工多少名?
(3)已知,求第三批次中女教職工比男教職工多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE∶S△ABC=1∶4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關(guān)系式為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com