【題目】已知函數(shù)為奇函數(shù),(1)求的值;(2)判斷并證明函數(shù)的單調(diào)性;(3)是否存在這樣的實(shí)數(shù),使對(duì)一切恒成立,若存在,試求出取值的集合;若不存在,說(shuō)明理由.

【答案】(1)a=3;(2)減函數(shù);(3).

【解析】試題分析:(1)由可得結(jié)果;(2)利用定義法,任取判斷的符號(hào)即可判斷函數(shù)的單調(diào)性;(3)利用函數(shù)的單調(diào)性和三角函數(shù)的性質(zhì)求恒成立問題.

試題解析:(1)因?yàn)?/span>是奇函數(shù),所以,可得a=3.

(2)任取

上的減函數(shù);

(3) 上的減函數(shù)

同理:由 得:

得:

即綜上所得: ,所以存在這樣的k,其范圍為.

【方法點(diǎn)晴】本題主要考查利用函數(shù)的奇偶性、單調(diào)性以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(即可)或恒成立(即可);② 數(shù)形結(jié)合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ① 求得的范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某制造廠商10月份生產(chǎn)了一批乒乓球,從中隨機(jī)抽取個(gè)進(jìn)行檢查,測(cè)得每個(gè)球的直徑單位:,將數(shù)據(jù)進(jìn)行分組,得到如下頻率分布表:

1、、、的值,并畫出頻率分布直方圖結(jié)果保留兩位小數(shù)

2已知標(biāo)準(zhǔn)乒乓球的直徑為,直徑誤差不超過的為五星乒乓球,若這批乒乓球共有個(gè)試估計(jì)其中五星乒乓球的數(shù)目;

3統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值例如區(qū)間的中點(diǎn)值是作為代表,估計(jì)這批乒乓球直徑的平均值和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線的斜率為

1的值;

2若存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

1當(dāng)時(shí),求函數(shù)上的最大值和最小值;

2當(dāng)時(shí),是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)底數(shù)時(shí),函數(shù)的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新一屆中央領(lǐng)導(dǎo)集體非常重視勤儉節(jié)約,從光盤行動(dòng)節(jié)約辦春晚到飯店吃飯是吃光盤子或時(shí)打包帶走,稱為光盤族,否則稱為非光盤族.政治課上政治老師選派幾位同學(xué)組成研究性小組,從某社區(qū)[25,55]歲的人群中隨機(jī)抽取人進(jìn)行了一次調(diào)查,得到如下統(tǒng)計(jì)表:

組數(shù)

分組

頻數(shù)

頻率

光盤族占本組比例

1

[25,30

50

005

30%

2

[30,35

100

010

30%

3

[35,40

150

015

40%

4

[40,45

200

020

50%

5

[45,50

a

b

65%

6

[50,55

200

020

60%

1)求的值,并估計(jì)本社區(qū)[25,55)歲的人群中光盤族所占比例;

2)從年齡段在[35,45)的光盤族中采用分層抽樣方法抽取8人參加節(jié)約糧食宣傳活動(dòng),并從這8人中選取2人作為領(lǐng)隊(duì).求選取的2名領(lǐng)隊(duì)分別來(lái)自[35,40)與[40,45)兩個(gè)年齡段的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,公園有一塊邊長(zhǎng)為的等邊的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,

1設(shè),,求用表示的函數(shù)關(guān)系式;

2如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長(zhǎng),的位置又應(yīng)在哪里?請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校隨機(jī)抽取部分新生調(diào)查其上學(xué)路上所需時(shí)間單位:分鐘,并將所得數(shù)據(jù)繪制成頻率分布直方圖如圖,其中,上學(xué)路上所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為,,.

1求直方圖中的值;

2如果上學(xué)路上所需時(shí)間不少于60分鐘的學(xué)生可申請(qǐng)?jiān)趯W(xué)校住宿,請(qǐng)估計(jì)學(xué)校1000名新生中有多少名學(xué)生可以申請(qǐng)住宿;

3現(xiàn)有6名上學(xué)路上時(shí)間小于分鐘的新生,其中2人上學(xué)路上時(shí)間小于分鐘. 從這6人中任選2人,設(shè)這2人中上學(xué)路上時(shí)間小于分鐘人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,,,平面平面相交于點(diǎn).

(1)求證:;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長(zhǎng)為2的菱形, 的中點(diǎn),過三點(diǎn)的平面交, 的中點(diǎn),求證:

(1)平面;

(2)平面

(3)平面平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案