【題目】已知橢圓,過點(diǎn)且與軸不重合的直線與相交于兩點(diǎn),點(diǎn),直線與直線交于點(diǎn).

1)當(dāng)垂直于軸時(shí),求直線的方程;

2)證明:.

【答案】(1);(2)詳見解析.

【解析】

1)當(dāng)垂直于軸時(shí),其方程為,求出點(diǎn)的坐標(biāo)后可得直線的斜率,于是可得直線方程。(2)由于軸上,所以只需證明點(diǎn)的縱坐標(biāo)相等即可得到結(jié)論成立,解題時(shí)注意直線方程的設(shè)法.

(1)設(shè)點(diǎn),

當(dāng)垂直于軸時(shí),可得,所以,

所以點(diǎn)的坐標(biāo)為,

,

所以,

所以直線的方程為

(2)法一:

當(dāng)直線的斜率不存在時(shí),其方程為,

,則,此時(shí)方程為,當(dāng)時(shí),,所以,因此,所以

,則,此時(shí)方程為,當(dāng)時(shí),,所以,因此,所以

綜上可得

當(dāng)直線的斜率存在時(shí),設(shè),

消去y整理得,

其中,

設(shè),則

因?yàn)?/span>,

所以直線的方程為

當(dāng)時(shí),得,

因?yàn)?/span>

所以,

所以

法二:

設(shè)直線

消去x整理得,

其中,

設(shè),,則,

所以,故所以

因?yàn)?/span>

所以直線的方程為,

當(dāng)時(shí),得,

所以,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為

(Ⅰ)寫出曲線C的直角坐標(biāo)方程;

(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)生學(xué)習(xí)的自律性很重要.某學(xué)校對(duì)自律性與學(xué)生成績是否有關(guān)進(jìn)行了調(diào)研,從該校學(xué)生中隨機(jī)抽取了100名學(xué)生,通過調(diào)查統(tǒng)計(jì)得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表:

自律性一般

自律性強(qiáng)

合計(jì)

成績優(yōu)秀

40

成績一般

20

合計(jì)

50

100

1)補(bǔ)全列聯(lián)表中的數(shù)據(jù);

2)判斷是否有的把握認(rèn)為學(xué)生的自律性與學(xué)生成績有關(guān).

參考公式及數(shù)據(jù):.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求同時(shí)滿足條件:①與軸相切,②圓心在直線上,③直線被截得的弦長為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,均垂直于平面,,.

1)過的平面與平面垂直,請(qǐng)?jiān)趫D中作出截此多面體所得的截面,并說明理由;

2)若,,求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)|3x2|.

(1)解不等式f(x)<4|x1|;

(2)已知mn1(m,n>0),若|xa|f(x)≤(a>0)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的左、右焦點(diǎn)為,右頂點(diǎn)為,上頂點(diǎn)為.已知

1)求橢圓的離心率;

2)設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn),經(jīng)過原點(diǎn)的直線與該圓相切,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在梯形CDEF中,四邊形ABCD為正方形,且,將沿著線段AD折起,同時(shí)將沿著線段BC折起,使得EF兩點(diǎn)重合為點(diǎn)P

求證:平面平面ABCD;

求直線PB與平面PCD的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某游戲廠商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:

①3小時(shí)以內(nèi)(3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿足關(guān)系式:;

②35小時(shí)(5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);

超過5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.

當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;

該游戲廠商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作;若,且該游戲廠商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案