【題目】如圖,矩形中,,為邊的中點,將繞直線翻轉(zhuǎn)成(平面),為線段的中點,則在翻折過程中,①與平面垂直的直線必與直線垂直;②線段的長恒為③異面直線與所成角的正切值為④當三棱錐的體積最大時,三棱錐外接球的體積是.上面說法正確的所有序號是( )
A.①②④B.①③④C.②③D.①④
科目:高中數(shù)學 來源: 題型:
【題目】已知:在長方體中,,點是線段上的一個動點,則①的最小值等于__________;②直線與平面所成角的正切值的取值范圍為____________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個有窮數(shù)列的每相鄰兩項之間插入這兩項的和,形成新的數(shù)列,我們把這樣的操作稱為該數(shù)列的一次“Z拓展”.如數(shù)列1,2第1次“Z拓展”后得到數(shù)列1,3,2,第2次“Z拓展”后得到數(shù)列1,4,3,5,2.設數(shù)列a,b,c經(jīng)過第n次“Z拓展”后所得數(shù)列的項數(shù)記為Pn,所有項的和記為Sn.
(1)求P1,P2;
(2)若Pn≥2020,求n的最小值;
(3)是否存在實數(shù)a,b,c,使得數(shù)列{Sn}為等比數(shù)列?若存在,求a,b,c滿足的條件;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐O﹣ABCD的底面是邊長為1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.
(1)求證:直線MN∥平面OCD;
(2)求點M到平面OCD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,過橢圓:右焦點的直線交于,兩點,且橢圓的離心率為.
(1)求橢圓的方程;
(2),為上的兩點,若四邊形的對角線,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓的焦點且垂直于軸的直線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)設點均在橢圓上,點在拋物線上,若的重心為坐標原點,且的面積為,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司人數(shù)眾多為鼓勵員工利用網(wǎng)絡進行營銷,準備為員工辦理手機流量套餐.為了解員工手機流量使用情況,按照男員工和女員工的比例分層抽樣,得到名員工的月使用流量(單位:)的數(shù)據(jù),其頻率分布直方圖如圖所示.
(1)求的值,并估計這名員工月使用流量的平均值(同一組中的數(shù)據(jù)用中點值代表;
(2)若將月使用流量在以上(含)的員工稱為“手機營銷達人”,填寫下面的列聯(lián)表,能否有超過的把握認為“成為手機營銷達人與員工的性別有關”;
男員工 | 女員工 | 合計 | |
手機營銷達人 | 5 | ||
非手機營銷達人 | |||
合計 | 200/span> |
參考公式及數(shù)據(jù):,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若這名員工中有名男員工每月使用流量在,從每月使用流量在的員工中隨機抽取名進行問卷調(diào)查,記女員工的人數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃投資開發(fā)一種新能源產(chǎn)品,預計能獲得10萬元1000萬元的收益.現(xiàn)準備制定一個對開發(fā)科研小組的獎勵方案:獎金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎金總數(shù)不超過9萬元,同時獎金總數(shù)不超過收益的.
(Ⅰ)若建立獎勵方案函數(shù)模型,試確定這個函數(shù)的定義域、值域和的范圍;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:①;②.試分析這兩個函數(shù)模型是否符合公司的要求?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com