【題目】已知函數(shù)f(x)= .
(1)證明:f(x)+|f(x)﹣2|≥2;
(2)當(dāng)x≠﹣1時,求y= 的最小值.
【答案】
(1)證明:因為f(x)= ≥0,
所以f(x)+|f(x)﹣2|=|f(x)|+|2﹣f(x)|≥|f(x)+2﹣f(x)|=2,
當(dāng)且僅當(dāng)f(x)[2﹣f(x)]≥0即0≤f(x)≤2即﹣1﹣2 ≤x≤﹣1+2 時取等號
(2)解:當(dāng)x≠﹣1時,f(x)= >0,
所以y= = + +[f(x)]2≥3 = ,
當(dāng)且僅當(dāng) = =[f(x)]2即x=﹣1± 時取等號,
所以所求最小值為
【解析】(1)通過絕對值不等式放縮可得結(jié)論;(2)通過當(dāng)x≠﹣1時f(x)= >0,利用基本不等式的推廣放縮可得結(jié)論.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(小)值;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人參加普法知識競賽,共有5個不同題目,選擇題3個,判斷題2個,甲、乙兩人各抽一題.
(1)求甲抽到判斷題,乙抽到選擇題的概率是多少;
(2)求甲、乙兩人中至少有一人抽到選擇題的概率是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的個數(shù)是( )
①若正實數(shù)滿足,則的最小值是16;
②已知,則函數(shù)的最大值為;
③已知,且,則的最小值是36;
④若對任意實數(shù),不等式恒成立,則實數(shù)的取值范圍是。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐 中,底面 是平行四邊形,側(cè)面 底面 , 分別為 的中點(diǎn), , , .
(1)求證: 平面 ;
(2)求證:平面 平面 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|﹣|2x|.
(1)解不等式f(x)>﹣3;
(2)求函數(shù)y=f(x)的圖象與x軸圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目.經(jīng)測算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價值為200元,若該項目不獲利,政府將補(bǔ)貼.
(I)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項目不虧損;
(II)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形 中, ⊥平面 ,且四邊形 是平行四邊形.
(1)求證: ;
(2)當(dāng)點(diǎn) 在 的什么位置時,使得 ∥平面 ,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐 底面 為菱形,平面 平面 , , , , 為 的中點(diǎn).
(1)證明: ;
(2)二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線 的焦點(diǎn),斜率為 的直線交拋物線于 , ( )兩點(diǎn),且 .
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn), 為拋物線上一點(diǎn),若 ,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com