精英家教網 > 高中數學 > 題目詳情

【題目】如圖,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中點.求證: (Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE.

【答案】證明:(I)∵O是AC的中點,E是PC的中點, ∴OE∥AP,又∵OE平面BDE,PA
平面BDE.
∴PA∥平面BDE.
(II)∵PO⊥底面ABCD,PO⊥BD,
又∵AC⊥BD,且AC∩PO=O
∴BD⊥平面PAC,而BD平面BDE,
∴平面PAC⊥平面BDE
【解析】(I)根據線面平行的判定定理證出即可;(II)根據面面垂直的判定定理證明即可.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對平面與平面垂直的判定的理解,了解一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設集合A={x|x2﹣3x+2=0},B={x|x2+2(a+1)x+(a2﹣5)=0}. 若A∩B={2},求實數a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知曲線C1的參數方程為 (φ為參數).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4 cosθ.
(1)求C1與C2交點的直角坐標;
(2)已知曲線C3的參數方程為 (0≤α<π,t為參數,且t≠0),C3與C1相交于點P,C2與C3相交于點Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某產品的歷史收益率的頻率分布直方圖如圖所示.

(1)試估計該產品收益率的中位數;

(2)若該產品的售價(元)與銷量(萬份)之間有較強線性相關關系,從歷史銷售記錄中抽樣得到如表5組的對應數據:

售價(元)

25

30

38

45

52

銷量(萬份)

7.5

7.1

6.0

5.6

4.8

根據表中數據算出關于的線性回歸方程為,求的值;

(3)若從表中五組銷量數據中隨機抽取兩組,記其中銷量超過6萬份的組數為,求的分布列及期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖輸出的結果為(

A.(﹣2,2)
B.(﹣4,0)
C.(﹣4,﹣4)
D.(0,﹣8)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的偶函數,f(x)在[0,+∞)上是增函數,且f( )=0,則不等式f( )>0的解集為(
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0,
D.(2,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用數學歸納法證明“1+2+22+…+2n1=2n-1(n∈N)”的過程中,第二步n=k時等式成立,則當n=k+1時,應得到(  )
A.1+2+22+…+2k2+2k1=2k1-1
B.1+2+22+…+2k+2k1=2k-1+2k1
C.1+2+22+…+2k1+2k1=2k1-1
D.1+2+22+…+2k1+2k=2k1-1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】用數學歸納法證明“當 n 為正奇數時,xn+yn 能被 x+y 整除”,第二步歸納假
設應該寫成( )
A.假設當n=k 時, xk+yk 能被 x+y 整除
B.假設當N=2K 時, xk+yk 能被 x+y 整除
C.假設當N=2K+1 時, xk+yk 能被 x+y 整除
D.假設當 N=2K-1 時, x2k-1+y2k-1 能被 x+y 整除

查看答案和解析>>

同步練習冊答案