若函數(shù),同時滿足下列條件,(1)在D內為單調函數(shù);(2)存在實數(shù),.當時,,則稱此函數(shù)為D內等射函數(shù),設

則(1)的單調性為       ;(2)當為R內的等射函數(shù)時,的取值范圍是       .

 

【答案】

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在實數(shù)R上的函數(shù),g(x)是定義在正整數(shù)N*上的函數(shù),同時滿足下列條件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),當x<0時,f(x)>1且f(-1)=
5

(2)g(1)=f(0),g(2)=f(-2);
(3)f[g(n+2)]=
f[(n+3)g(n+1)]
f[(n+2)g(n)]
,n∈N*
試求:
(1)證明:任意x,y∈R,x≠y,都有
f(x)-f(y)
x-y
<0
;
(2)是否存在正整數(shù)n,使得g(n)是25的倍數(shù),若存在,求出所有自然數(shù)n;若不存在說明理由.(階乘定義:n!=1×2×3×…×n)

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山西省大同市高三第三次月考理科數(shù)學 題型:填空題

若函數(shù),同時滿足下列條件,

(1) 在D內為單調函數(shù);(2)存在實數(shù)mn.當時,,則稱此函數(shù)為D內等射函數(shù),設則:①的單調性為      ;②當為R內的等射函數(shù)時,的取值范圍是      

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省溫州市搖籃杯高一數(shù)學競賽試題 題型:解答題

(本題滿分20分)

是定義在實數(shù)上的函數(shù),是定義在正整數(shù)上的函數(shù),同時滿足下列條件:

   (1)任意,有,當時,;

   (2);

   (3)

試求:(1)證明:任意, ,都有

        (2)是否存在正整數(shù),使得是25的倍數(shù),若存在,求出所有自然數(shù);若不存在說明理由. (階乘定義:

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設f(x)是定義在實數(shù)R上的函數(shù),g(x)是定義在正整數(shù)N*上的函數(shù),同時滿足下列條件:
(1)任意x,y∈R,有f(x+y)=f(x)f(y),當x<0時,f(x)>1且數(shù)學公式;
(2)g(1)=f(0),g(2)=f(-2);
(3)數(shù)學公式,n∈N*
試求:
(1)證明:任意x,y∈R,x≠y,都有數(shù)學公式;
(2)是否存在正整數(shù)n,使得g(n)是25的倍數(shù),若存在,求出所有自然數(shù)n;若不存在說明理由.(階乘定義:n!=1×2×3×…×n)

查看答案和解析>>

同步練習冊答案