【題目】拋物線C:y2=2px(p>0)的焦點是F,直線y=2與拋物線C的交點到F的距離等于2.
(1)求拋物線C的方程;
(2)過點(2,0)斜率為k的直線l交拋物線C于A、B兩點,O為坐標(biāo)原點,直線AO與直線x=﹣2相交于點P,求證:BP∥x軸.
【答案】(1)y2=4x;(2)見解析
【解析】
(1)求出直線y=2與拋物線C的交點的橫坐標(biāo),應(yīng)用焦半徑公式,即可求解;
(2)設(shè)出直線l的方程,與拋物線方程聯(lián)立,建立A、B縱坐標(biāo)關(guān)系,再利用三點共線,求出縱坐標(biāo)關(guān)系,即可證明結(jié)論.
(1)由題意得直線與拋物線的交點坐標(biāo):(,2),
所以2 且p>0解得:p=2,
所以拋物線C的方程:y2=4x;
(2)由題意得:直線l的斜率不為零,
設(shè)直線l的方程:x=my+2,
代入拋物線方程得:y2﹣4my﹣8=0,
設(shè)A(x0,y0),B(x',y'),y0y'=﹣8,y',
所以B(x',),直線OA的方程:yxx,
與x=﹣2的交點P(﹣2,),
BP∥x軸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)若為的極值點,求實數(shù)的值;
(2)若在上是單調(diào)增函數(shù),求實數(shù)的取值范圍;
(3)當(dāng)時,方程有實根,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)).
(1)討論的單調(diào)性;
(2)是的導(dǎo)函數(shù),若存在兩個極值點,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關(guān)于軸的對稱點為,且.
(1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;
(2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設(shè)為橢圓上一點,且滿足(為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解一種植物果實的情況,隨機抽取一批該植物果實樣本測量重量(單位:克),按照,,,,分為5組,其頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計這種植物果實重量的平均數(shù)和方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)已知這種植物果實重量不低于32.5克的即為優(yōu)質(zhì)果實,用樣本估計總體.若從這種植物果實中隨機抽取3個,其中優(yōu)質(zhì)果實的個數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費用的標(biāo)準(zhǔn)是:重量不超過的包裹收費元;重量超過的包裹,除收費元之外,超過的部分,每超出(不足,按計算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計該公司對每件包裹收取的快遞費的平均值;
(ii)公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若直線是函數(shù)圖象的切線,求的最小值;
(3)當(dāng)時,若直線是函數(shù)圖象有兩個交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某生物探測器在水中逆流行進(jìn)時,所消耗的能量為E=cvnT,其中v為行進(jìn)時相對于水的速度,T為行進(jìn)時的時間(單位:h),c為常數(shù),n為能量次級數(shù),如果水的速度為4km/h,該生物探測器在水中逆流行進(jìn)200km.
(1)求T關(guān)于v的函數(shù)關(guān)系式;
(2)①當(dāng)能量次級數(shù)為2時,求探測器消耗的最少能量;
②當(dāng)能量次級數(shù)為3時,試確定v的大小,使該探測器消耗的能量最少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊長分別為a、b、c,且acosB+bcosA=2ccosB.
(1)若a=3,,求c的值;
(2)若,求f(A)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com