【題目】一位網(wǎng)民在網(wǎng)上光顧某網(wǎng)店,經(jīng)過(guò)一番瀏覽后,對(duì)該店鋪中的A,B,C三種商品有購(gòu)買意向.已知該網(wǎng)民購(gòu)買A種商品的概率為 ,購(gòu)買B種商品的槪率為 ,購(gòu)買C種商品的概率為 .假設(shè)該網(wǎng)民是否購(gòu)買這三種商品相互獨(dú)立
(1)求該網(wǎng)民至少購(gòu)買2種商品的概率;
(2)用隨機(jī)變量η表示該網(wǎng)民購(gòu)買商品的種數(shù),求η的槪率分布和數(shù)學(xué)期望.

【答案】
(1)解:記“記網(wǎng)民購(gòu)買i種商品”為事件Ai,i=2,3,

則P(A3)= ,

P(A2)= + =

∴該網(wǎng)民至少購(gòu)買2種商品的概率:

p=p(A1)+P(A2)= =


(2)解:隨機(jī)變量η的可能取值為0,1,2,3,

P(η=0)=(1﹣ )×(1﹣ )×(1﹣ )= ,

P(η=2)=P(A2)= ,

P(η=3)=P(A3)= ,

∴P(η=1)=1﹣ =

∴隨機(jī)變量η的分布列為:

η

0

1

2

3

P

Eη= =


【解析】(1)記“記網(wǎng)民購(gòu)買i種商品”為事件Ai , i=2,3,分別求出P(A3)和P(A2),由此能求出該網(wǎng)民至少購(gòu)買2種商品的概率.(2)隨機(jī)變量η的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出隨機(jī)變量η的分布列和Eη.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司生產(chǎn)某產(chǎn)品的年固定成本為100萬(wàn)元,每生產(chǎn)1千件需另投入27萬(wàn)元,設(shè)該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且.

⑴ 寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;

⑵ 當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一產(chǎn)品的生產(chǎn)中所獲年利潤(rùn)最大?(注:年利潤(rùn)=年銷售收入年總成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當(dāng)x<0時(shí),f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個(gè)單位長(zhǎng)度,所得函數(shù)是(
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.既不是奇函數(shù)也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次水下科研考察活動(dòng)中,需要潛水員潛入水深為60米的水底進(jìn)行作業(yè),根據(jù)以往經(jīng)驗(yàn),潛水員下潛的平均速度為(米/單位時(shí)間),每單位時(shí)間的用氧量為(升),在水底作業(yè)10個(gè)單位時(shí)間,每單位時(shí)間用氧量為0.9(升),返回水面的平均速度為(米/單位時(shí)間),每單位時(shí)間用氧量為1.5(升),記該潛水員在此次考察活動(dòng)中的總用氧量為(升).

(1)求關(guān)于的函數(shù)關(guān)系式;

(2)若 ,求當(dāng)下潛速度取什么值時(shí),總用氧量最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為F1、F2 , 短軸兩個(gè)端點(diǎn)為A、B,且四邊形F1AF2B是邊長(zhǎng)為2的正方形.

(1)求橢圓的方程;
(2)若C、D分別是橢圓長(zhǎng)的左、右端點(diǎn),動(dòng)點(diǎn)M滿足MD⊥CD,連接CM,交橢圓于點(diǎn)P.證明: 為定值.
(3)在(2)的條件下,試問(wèn)x軸上是否存異于點(diǎn)C的定點(diǎn)Q,使得以MP為直徑的圓恒過(guò)直線DP、MQ的交點(diǎn),若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中, 是邊長(zhǎng)為的等邊三角形, , 分別是的中點(diǎn).

(1)求證: 平面;

(2)求證: 平面;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|3≤3x≤27},
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π. (Ⅰ)當(dāng)x∈[0, ]時(shí),求f(x)的最大值;
(Ⅱ)請(qǐng)用“五點(diǎn)作圖法”畫出f(x)在[0,π]上的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案