A. | $\frac{4π}{3}$ | B. | 2π | C. | $\frac{8π}{3}$ | D. | $\frac{10π}{3}$ |
分析 由三視圖知,此組合體上部是一個(gè)圓錐,下部是一個(gè)半球,半球體積易求,欲求圓錐體積需先求圓錐的高,再由公式求體積,最后再想加求出組合體的體積.
解答 解:這個(gè)幾何體上部為一圓錐,下部是一個(gè)半球,
由于半球的半徑為1,故其體積為$\frac{1}{2}×\frac{4}{3}$π×13=$\frac{2π}{3}$,
圓錐的高為$\sqrt{(\sqrt{5})^{2}-1}$=2,
故此圓錐的體積為$\frac{1}{3}$×2×π×12=$\frac{2π}{3}$.
∴此幾何體的體積是V=$\frac{2π}{3}+\frac{2π}{3}$=$\frac{4π}{3}$.
故選:A.
點(diǎn)評(píng) 本題考點(diǎn)是由三視圖求幾何體的面積、體積,考查對(duì)三視圖的理解與應(yīng)用,主要考查三視圖與實(shí)物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實(shí)物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -2或1 | C. | 2或-1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x+y-3=0或x-2y=0 | B. | x+y-3=0或2x-y=0 | ||
C. | x-y+1=0或x+y-3=0 | D. | x-y+1=0或2x-y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,0) | B. | ($\frac{1}{2}$,0) | C. | ($\frac{1}{8}$,0) | D. | (0,$\frac{1}{8}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>