【題目】已知y=f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x+x2 .
(1)求x<0時,f(x)的解析式;
(2)問是否存在這樣的非負數(shù)a,b,當x∈[a,b]時,f(x)的值域為[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請說明理由.
【答案】
(1)解:設x<0,則﹣x>0,于是f(﹣x)=﹣x+x2,
又f(x)為奇函數(shù),f(﹣x)=﹣f(x),∴﹣f(x)=﹣x+x2,
即x<0時,f(x)=x﹣x2
(2)解:假設存在這樣的數(shù)a,b.
∵a≥0,且f(x)=x+x2在x≥0時為增函數(shù),
∴x∈[a,b]時,f(x)∈[f(a),f(b)]=[4a﹣2,6b﹣6],
∴
,即
或 ,考慮到0≤a<b,且4a﹣2<6b﹣6,
可得符合條件的a,b值分別為
【解析】(1)設x<0,則﹣x>0,利用x≥0時,f(x)=x+x2 . 得到f(﹣x)=﹣x+x2 , 再由奇函數(shù)的性質(zhì)得到f(﹣x)=﹣f(x),代換即可得到所求的解析式.(2)假設存在這樣的數(shù)a,b.利用函數(shù)單調(diào)性的性質(zhì)建立方程求參數(shù),若能求出,則說明存在,否則說明不存在.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當a∈( ,3)時,求直線AC的傾斜角α的取值范圍;
(2)當a=2時,求△ABC的BC邊上的高AH所在直線方程l.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的一個焦點與拋物線 的焦點F重合,且橢圓短軸的兩個端點與F構(gòu)成正三角形.
(1)求橢圓的方程;
(2)若過點(1,0)的直線l與橢圓交于不同兩點P、Q,試問在x軸上是否存在定點E(m,0),使 恒為定值?若存在,求出E的坐標及定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對任意x∈(﹣ , )恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若a∈R,則“關(guān)于x的方程x2+ax+1=0無實根”是“z=(2a﹣1)+(a﹣1)i(其中i表示虛數(shù)單位)在復平面上對應的點位于第四象限”的( )
A.充分非必要條件
B.必要非充分條件
C.充要條件
D.既非充分又非必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知P是邊長為2的正三角形ABC邊BC上的動點,則 的值( )
A.是定值6
B.最大值為8
C.最小值為2
D.與P點位置有關(guān)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2016年1月1日起,我國全面二孩政策正式實施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個”,“生二孩能休多久產(chǎn)假”等問題成為千千萬萬個家庭在生育決策上避不開的話題.為了解針對產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機構(gòu)隨機抽取了200戶有生育二胎能力的適齡家庭進行問卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭數(shù) | 4 | 8 | 16 | 20 | 26 |
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對產(chǎn)假為14周與16周,估計某家庭有生育意愿的概率分別為多少?
(2)假設從5種不同安排方案中,隨機抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇.
①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用表示兩種方案休假周數(shù)之和.求隨機變量的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com