【題目】已知橢圓C:1(a>b>0),橢圓C上的點到焦點距離的最大值為9,最小值為1.
(1)求橢圓C的標準方程;
(2)求橢圓C上的點到直線l:4x﹣5y+40=0的最小距離?
【答案】(1).(2).
【解析】
(1)根據(jù)題意列出方程組,求出,,,從而求出橢圓的標準方程.
(2)由題可知直線與橢圓不相交,將直線平移,可知其與橢圓相切時,切點到直線的距離最小或最大,據(jù)此可設(shè)直線平行于直線,將之與橢圓方程聯(lián)立,進而得解.
(1)因為橢圓C上的點到焦點距離的最大值為9,最小值為1,
所以a+c=9,a﹣c=1,
∴a=5,c=4,
∴b2=a2﹣c2=9,
∴橢圓的標準方程為:;
(2)由直線l的方程與橢圓的方程可以知道,直線l與橢圓不相交,
設(shè)直線m平行于直線l,則直線m的方程可以寫成4x﹣5y+k=0,
聯(lián)立,整理得25x2+8kx+k2﹣225=0,
令△=0,得64k2﹣4×25(k2﹣225)=0
解得k1=25或k2=﹣25,
∴當k1=25時,直線m與橢圓交點到直線l的距離最近,
此時直線m的方程為4x﹣5y+25=0,
直線m與直線l間的距離d,
所以,橢圓C上的點到直線l:4x﹣5y+40=0的最小距離是.
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓上任意一點,點,線段的中垂線交于點.
(1)求動點的軌跡方程;
(2)若動直線與圓相切,且與動點的軌跡交于點、,求面積的最大值(為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,短軸的一個端點到焦點的距離為.
(1)求橢圓的方程;
(2)斜率為的直線與橢圓交于,兩點,線段的中點在直線上,求直線與軸交點縱坐標的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD為菱形,底面ABCD,,,E、F分別是PC和AB的中點.
(1)證明:平面PAD;
(2)若,求PD與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知如圖所示,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E、F分別為PC的三等分點.
(1)證明:AF∥平面EBD;
(2)已知AP=AD=1,AB=2,求二面角E-BD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次調(diào)查中,甲、乙、丙、丁四位同學閱讀量有如下關(guān)系:同學甲、丙閱讀量之和與乙、丁閱讀量之和相同,同學甲、乙閱讀量之和大于丙、丁閱讀量之和,丁的閱讀量大于乙、丙閱讀量之和.那么這四名同學按閱讀量從大到小的排序依次為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)關(guān)于的不等式的解集為,求的值;
(2)若函數(shù)的圖象與軸圍成圖形的面積不小于50,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:
A:所以芒果以元/千克收購;
B:對質(zhì)量低于克的芒果以元/個收購,高于或等于克的以元/個收購.
通過計算確定種植園選擇哪種方案獲利更多?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com