【題目】設(shè)函數(shù),已知曲線在點處的切線與直垂直.

(1)求的值;

(2)求函數(shù)的極值點.

【答案】(1) ;(2)見解析.

【解析】

1)對函數(shù)求導(dǎo),由曲線在點處的切線與直垂直,可知,即可求出;(2)求導(dǎo),然后分類討論,確定單調(diào)性,進而可以求出極值點。

(1)由題意知,,,解得.

(2)函數(shù),定義域為,

,令,

,

①當(dāng)時,,有,即,所以在區(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上無極值點;

②當(dāng)時,,令,有,,

當(dāng)時,,即,得上遞減,

當(dāng)時,,即,得上遞增,

當(dāng)時,,即,得上遞減,

此時有一個極小值點為,有一個極大值點為.

③當(dāng)時,,令,有,

當(dāng)時,,即,得上遞增,

當(dāng)時,,即,得上遞減,

此時有唯一的極大值點為.

綜上可知,當(dāng)時,函數(shù)有一個極小值點為,有一個極大值點為

當(dāng)時,函數(shù)在區(qū)間上無極值點;

當(dāng)時,函數(shù)有唯一的極大值點為,無極小值點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足.

(1)若,證明:

(i)當(dāng)時,有;

(ii)當(dāng)時,有.

(2)若,證明:當(dāng)時,有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計

合計

(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三角形中,邊所在的直線方程分別為的中點為.

1)求的坐標(biāo);

2)求角的內(nèi)角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又有零點的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數(shù)列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個問題中,戊所得為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線段的中點,若為線段上的動點(不含.

1)平面與平面是否互相垂直?如果是,請證明;如果不是,請說明理由;

2)求二面角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為常數(shù),函數(shù)fx)=xlnx1)﹣ax2,給出以下結(jié)論:(1fx)存在唯一零點與a的取值無關(guān);(2)若a=e2,則fx)存在唯一零點;(3)若ae2,則fx)存在兩個零點.其中正確的個數(shù)是( )

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】12分)已知等差數(shù)列{an}中,a1=1,a3=﹣3

)求數(shù)列{an}的通項公式;

)若數(shù)列{an}的前k項和Sk=﹣35,求k的值.

查看答案和解析>>

同步練習(xí)冊答案