【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.在極坐標(biāo)系中有射線(xiàn)和曲線(xiàn).
(1)判斷射線(xiàn)和曲線(xiàn)公共點(diǎn)的個(gè)數(shù);
(2)若射線(xiàn)與曲線(xiàn) 交于兩點(diǎn),且滿(mǎn)足,求實(shí)數(shù)的值.
【答案】(1)一個(gè);(2)2
【解析】試題分析:(1)根據(jù)三角函數(shù)平方關(guān)系得曲線(xiàn)直角坐標(biāo)方程,根據(jù)將射線(xiàn)極坐標(biāo)方程化為直角坐標(biāo)方程,再根據(jù)直線(xiàn)與圓聯(lián)立方程組解交點(diǎn),即得個(gè)數(shù),(2)將代入曲線(xiàn)的方程,并由韋達(dá)定理得,再由得,解得實(shí)數(shù)的值.
試題解析:(1)直線(xiàn)的直角坐標(biāo)方程為,
曲線(xiàn)是以為圓心,以為半徑的圓,其直角坐標(biāo)方程為:,
聯(lián)立
解得,
直線(xiàn)與曲線(xiàn)有一個(gè)公共點(diǎn).
(2)將代入曲線(xiàn)的方程得:,
即,由題知,解得.
設(shè)方程兩根分別為,
則由韋達(dá)定理知: ,
由知,即,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,用符號(hào)表示不超過(guò)的最大整數(shù),若函數(shù)有且僅有個(gè)零點(diǎn),則的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,且,其中,,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線(xiàn)段上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①;②;③面;④面,
其中恒成立的為( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校做了一次關(guān)于“感恩父母”的問(wèn)卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問(wèn)卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問(wèn)卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問(wèn)卷中抽取60份,則在15~16歲學(xué)生中抽取的問(wèn)卷份數(shù)為( )
A.60 B.80 C.120 D.180
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,是橢圓上的兩個(gè)不同點(diǎn).
(1)若,且點(diǎn)所在直線(xiàn)方程為,求的值;
(2)若直線(xiàn)的斜率之積為,線(xiàn)段上有一點(diǎn)滿(mǎn)足,連接并廷長(zhǎng)交橢圓于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某購(gòu)物中心為了了解顧客使用新推出的某購(gòu)物卡的顧客的年齡分布情況,隨機(jī)調(diào)查了位到購(gòu)物中心購(gòu)物的顧客年齡,并整理后畫(huà)出頻率分布直方圖如圖所示,年齡落在區(qū)間內(nèi)的頻率之比為.
(1) 求顧客年齡值落在區(qū)間內(nèi)的頻率;
(2) 擬利用分層抽樣從年齡在的顧客中選取人召開(kāi)一個(gè)座談會(huì),現(xiàn)從這人中選出人,求這兩人在不同年齡組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù)f(x)=ax+ka-x,(a>0且a≠1,k∈R).
(1)求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)a,使函數(shù)y=(f(x)+2)ax在[-1,1]上的最大值為7?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx.
(1)若a=2,且f(x)是R上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=0時(shí),若關(guān)于x的方程f(x)=x+1有三個(gè)實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,如果存在函數(shù)g(x),使得f(x)≥g(x)對(duì)于一切實(shí)數(shù)x都成立,那么稱(chēng)g(x)為函數(shù)f(x)的一個(gè)承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-1,0).
(1)若a=1,b=2.寫(xiě)出函數(shù)f(x)的一個(gè)承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個(gè)承托函數(shù),且f(x)為函數(shù)的一個(gè)承托函數(shù)?若存在,求出a,b,c的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com