設(shè)是橢圓上不關(guān)于坐標(biāo)軸對稱的兩個點,直線交軸于點(與點不重合),O為坐標(biāo)原點.
(1)如果點是橢圓的右焦點,線段的中點在y軸上,求直線AB的方程;
(2)設(shè)為軸上一點,且,直線與橢圓的另外一個交點為C,證明:點與點關(guān)于軸對稱.
(1)直線(即)的方程為或;(2)詳見解析.
解析試題分析:(1)由已知條件推導(dǎo)出點的坐標(biāo)為,由此能求出直線(即)的方程.(2)設(shè)點關(guān)于軸的對稱點為(在橢圓上),要證點與點關(guān)于軸對稱,只要證點與點C重合,又因為直線與橢圓的交點為C(與點不重合),所以只要證明點,,三點共線即可.
(1)橢圓的右焦點為, 1分
因為線段的中點在y軸上,
所以點的橫坐標(biāo)為,
因為點在橢圓上,
將代入橢圓的方程,得點的坐標(biāo)為. 3分
所以直線(即)的方程為或. 5分
(2)設(shè)點關(guān)于軸的對稱點為(在橢圓上),
要證點與點關(guān)于軸對稱,
只要證點與點C重合,.
又因為直線與橢圓的交點為C(與點不重合),
所以只要證明點,,三點共線. 7分
以下給出證明:
由題意,設(shè)直線的方程為,,,則.
由
得 , 9分
所以 ,
,. &n
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為橢圓:的左、右焦點,過橢圓右焦點F2斜率為()的直線與橢圓相交于兩點,的周長為8,且橢圓C與圓相切。
(1)求橢圓的方程;
(2)設(shè)為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓上的點到橢圓右焦點的最大距離為,離心率,直線過點與橢圓交于兩點.
(1)求橢圓的方程;
(2)上是否存在點,使得當(dāng)繞轉(zhuǎn)到某一位置時,有成立?若存在,求出所有點的坐標(biāo)與的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線y=2x是△ABC中∠C的平分線所在的直線,且A、B的坐標(biāo)分別為A(-4,2)、B(3,1),求頂點C的坐標(biāo)并判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面內(nèi)兩點.
(1)求的中垂線方程;
(2)求過點且與直線平行的直線的方程;
(3)一束光線從點射向(Ⅱ)中的直線,若反射光線過點,求反射光線所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點O,長軸均為MN且在x軸上,短軸長分別為2m,2n(m>n),過原點且不與x軸重合的直線l與C1,C2的四個交點按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2.
(1)當(dāng)直線l與y軸重合時,若S1=λS2,求λ的值;
(2)當(dāng)λ變化時,是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com