【題目】在等差數(shù)列中,,
(1)求的通項公式;
(2)求的前n項和
【答案】(1);(2)
【解析】
試題分析:(1)根據(jù)已知數(shù)列為等差數(shù)列,結合數(shù)列的性質可知:前3項和,所以,又因為,所以公差,再根據(jù)等差數(shù)列通項公式,可以求得。本問考查等差數(shù)列的通項公式及等差數(shù)列的性質,屬于對基礎知識的考查,為容易題,要求學生必須掌握。(2)由于為等差數(shù)列,所以可以根據(jù)重要結論得知:數(shù)列為等比數(shù)列,可以根據(jù)等比數(shù)列的定義進行證明,即,符合等比數(shù)列定義,因此數(shù)列是等比數(shù)列,首項為,公比為2,所以問題轉化為求以4為首項,2為公比的等比數(shù)列的前n項和,根據(jù)公式有。本問考查等比數(shù)列定義及前n項和公式。屬于對基礎知識的考查。
試題解析:(1)又
(2)由(1)知得:
是以4為首項2為公比的等比數(shù)列
科目:高中數(shù)學 來源: 題型:
【題目】為了確定某類種子的發(fā)芽率,從一大批種子中抽出若干粒進行發(fā)芽試驗,其結果如下表:
種子粒數(shù)n | 25 | 70 | 130 | 700 | 2 015 | 3 000 | 4 000 |
發(fā)芽粒數(shù)m | 24 | 60 | 116 | 639 | 1 819 | 2 713 | 3 612 |
(1)計算各批種子的發(fā)芽頻率;(保留三位小數(shù))
(2)怎樣合理地估計這類種子的發(fā)芽率?(保留兩位小數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】4個不同的球,4個不同的盒子,把球全部放入盒內.
(1)恰有1個盒不放球,共有幾種放法?
(2)恰有1個盒內有2個球,共有幾種放法?
(3)恰有2個盒不放球,共有幾種放法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)。
(1)若曲線在處的切線方程為,求實數(shù)和的值;
(2)討論函數(shù)的單調性;
(3)若,且對任意,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某化工廠引進一條先進生產線生產某種化工產品, 其生產的總成本(萬元)與年產量(噸)之間的函數(shù)關系式可以近似地表示為,已知此生產線年產量最大為噸.
(1)求年產量為多少噸時,生產每噸產品的平均成本最低,并求最低成本;
(2)若毎噸產品平均出廠價為萬元,那么當年產量為多少噸時,可以獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“開門大吉”是某電視臺推出的游戲節(jié)目。選手面對號8扇大門,依次按響門上的門鈴,
門鈴會播放一段音樂(將一首經典流行歌曲以單音色旋律的方式演繹),選手需正確答出這首歌的名字,
方可獲得該扇門對應的家庭夢想基金。在一次場外調查中,發(fā)現(xiàn)參賽選手大多在以下兩個年齡段:
,(單位:歲),統(tǒng)計這兩個年齡段選手答對歌曲名稱與否的人數(shù)如下圖所示。
(Ⅰ)寫出列聯(lián)表,并判斷是否有的把握認為答對歌曲名稱與否和年齡有關,說明你的理由。(下
面的臨界值表供參考)
0.1 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(Ⅱ)在統(tǒng)計過的參賽選手中按年齡段分層選取9名選手,并抽取3名幸運選手,求3名幸運選手中在
歲年齡段的人數(shù)的分布列和數(shù)學期望。
(參考公式:,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線,半徑為的圓與相切,圓心在軸上且在直線的右上方.
(1)求圓的方程;
(2)過點的任意直線與圓交于兩點(在軸上方),問在軸正半軸上是否存在定點,
使得軸平分?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】編輯如下運算程序:,,.
(1)設數(shù)列{}的各項滿足,求;
(2)由(1)猜想{}的通項公式;
(3)用數(shù)學歸納法證明你的猜想。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com